Skip to main content
Log in

Scalar curvature, Kodaira dimension and \({{\widehat{A}}}\)-genus

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let (Xg) be a compact Riemannian manifold with quasi-positive Riemannian scalar curvature. If there exists a complex structure J compatible with g, then the Kodaira dimension of (XJ) is equal to \(-\infty \) and the canonical bundle \(K_X\) is not pseudo-effective. We also introduce the complex Yamabe number \(\lambda _c(X)\) for compact complex manifold X, and show that if \(\lambda _c(X)\) is greater than 0, then \(\kappa (X)\) is equal to \(-\infty \); moreover, if X is also spin, then the Hirzebruch A-hat genus \({{\widehat{A}}}(X)\) is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angella, D.: Hodge numbers of a hypothetical complex structure on \({\mathbb{S}}^6\). arXiv:1705.10518

  2. Angella, D., Calamai, S., Spotti, C.: On Chern-Yamabe problem. arXiv:1501.02638

  3. Apostolov, V., Draghici, T.: Hermitian conformal classes and almost Kähler structures on 4-manifolds. Differ. Geom. Appl. 11(2), 179–195 (1999)

    Article  MATH  Google Scholar 

  4. Boucksom, S., Demailly, J.-P., Paun, M., Peternell, P.: The pseudoeffective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom. 22, 201–248 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barth, W., Hulek, K., Peters, C., Van de Ven, A.: Compact complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, (2004)

  6. Bor, G., Hernandez-Lamoneda, L.: The canonical bundle of a Hermitian manifold. Bol. Soc. Mat. Mex. 5, 187–198 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Brunella, M.: A positivity property for foliations on compact Käler manifolds. Int. J. Math. 17(1), 35–43 (2006)

    Article  MATH  Google Scholar 

  8. del Rio, H., Simanca, S.: The Yamabe problem for almost Hermitian manifolds. J. Geom. Anal. 13(1), 185–203 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demailly, J.-P., Peternell, T., Schneider, M.: Compact complex manifolds with numerically effective tangent bundles. J. Algebraic Geom. 3(2), 295–345 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Fang, S.-W., Tosatti, V., Weinkove, B., Zheng, T.: Inoue surfaces and the Chern-Ricci flow. J. Funct. Anal. 271, 3162–3185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gauduchon, P.La: 1-forme de torsion d’une varietehermitienne compacte. Math. Ann. 267(4), 495–518 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gauduchon, P.: Fibrés hermitiens à endomorphisme de Ricci non-négatif. Bull. Soc. Math. France 105, 113–140 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gromov, M., Lawson, H.B.: The classification of simply connected manifolds of positive scalar curvature. Ann. Math. (2) 111(3), 423–434 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gursky, M.J., LeBrun, C.: Yamabe invariants and Spinc structures. Geom. Funct. Anal. 8(6), 965–977 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoering, A., Peternell, T.: Minimal models for Kähler threefolds. Invent. math. 213, 217–264 (2016)

    Article  MATH  Google Scholar 

  16. Huckleberry, A., Kebekus, S., Peternell, T.: Group actions on \({\mathbb{S}}^6\) and complex structures on \({\mathbb{P}}^3\). Duke Math. J. 102, 101–124 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lawson, H.B., Michelsohn, M.: Spin geometry. Princeton Mathematical Series, 38. Princeton University Press, Princeton (1989)

  18. LeBrun, C.: Kodaira dimension and the Yamabe problem. Comm. Anal. Geom. 7(1), 133–156 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. LeBrun, C.: Orthogonal complex structures on \({\mathbb{S}}^6\). Proc. Am. Math. Soc. 101(1), 136–138 (1987)

    MATH  MathSciNet  Google Scholar 

  20. LeBrun, C.: On Einstein, Hermitian 4-manifolds. J. Differ. Geom. 90(2), 277–302 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lejmi, M., Upmeier, M.: Integrability theorems and conformally constant Chern scalar curvature metrics in almost Hermitian geometry. arXiv:1703.01323

  22. Lu, P., Tian, G.: The complex structures on connected sums of \({\mathbb{S}}^3\times {\mathbb{S}}^3\). Manifolds and geometry, pp 284–293, Symposium on Mathematical, XXXVI, Cambridge University Press, Cambridge, (1996)

  23. Liu, K.-F., Yang, X.-K.: Geometry of Hermitian manifolds. Int. J. Math. 23, 40 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Liu, K.-F., Yang, X.-K.: Ricci curvatures on Hermitian manifolds. Trans. Am. Math. Soc. 369, 5157–5196 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, K.-F., Yang, X.-K.: Minimal complex surfaces with Levi-Civita Ricci-flat metrics. Acta Math. Sin. (Engl. Ser.) 34(8), 1195–1207 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, K.-F., Zhang, W.-P.: Adiabatic limits and foliations. Contemp. Math. 279, 195–208 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stolz, S.: Simply connected manifolds of positive scalar curvature. Ann. Math. (2) 136(3), 511–540 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Székelyhidi, G., Tosatti, V., Weinkove, B.: Gauduchon metrics with prescribed volume form. Acta Math. 219(1), 181–211 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schoen, R.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in calculus of variations, Lecture Notes Math. 1365, Springer, Berlin, pp 120–154, (1989)

  30. Schoen, R., Yau, S.-T.: On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28(1–3), 159–183 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schoen, R., Yau, S.-T.: Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature. Ann. Math. (2) 110(1), 127–142 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schoen, R., Yau, S.-T.: Positive scalar curvature and minimal hypersurface singularities. arXiv:1704.05490

  33. Tang, Z.-Z.: Curvature and integrability of an almost Hermitian structure. Int. J. Math. 17(1), 97–105 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Teleman, A.: The pseudo-effective cone of a non-Kählerian surface and applications. Math. Ann. 335, 965–989 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tosatti, V.: Non-Kähler Calabi-Yau manifolds. Contemp. Math. 644, 261–277 (2015)

    Article  MATH  Google Scholar 

  36. Wu, H.-H.: The Bochner technique in differential geometry. Math. Rep. 3(2), i-xii and 289–538 (1988)

  37. Yang, X.-K.: Hermitian manifolds with semi-positive holomorphic sectional curvature. Math. Res. Lett. 23(3), 939–952 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, X.-K.: Scalar curvature on compact complex manifolds. Trans. Am. Math. Soc. 371(3), 2073–2087 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yau, S.-T.: On the curvature of compact Hermitian manifolds. Invent. Math. 25, 213–239 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  Google Scholar 

  41. Zhang, W.-P.: Positive scalar curvature on foliations. Ann. Math. 185(3), 1035–1068 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Bing-Long Chen, Fei Han, Tian-Jun Li, Ke-Feng Liu, Jian-Qing Yu, Bai-Lin Song, Song Sun, Valentino Tosatti, Shing-Tung Yau and Fang-Yang Zheng for valuable comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaokui Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The scalar curvature relation on compact complex manifolds

Appendix: The scalar curvature relation on compact complex manifolds

Let’s recall some elementary settings (e.g. [24, Section 2]). Let \((M, g, \nabla )\) be a 2n-dimensional Riemannian manifold with the Levi–Civita connection \(\nabla \). The tangent bundle of M is also denoted by \(T_{{\mathbb {R}}}M\). The Riemannian curvature tensor of \((M,g,\nabla )\) is

$$\begin{aligned} R(X,Y,Z,W)=g\left( \nabla _X\nabla _YZ-\nabla _Y\nabla _XZ-\nabla _{[X,Y]}Z,W\right) \end{aligned}$$

for tangent vectors \(X,Y,Z,W\in T_{{\mathbb {R}}}M\). Let \(T_{{\mathbb {C}}}M=T_{{\mathbb {R}}}M\otimes {{\mathbb {C}}}\) be the complexification. We can extend the metric g and the Levi–Civita connection \(\nabla \) to \(T_{{{\mathbb {C}}}}M\) in the \({{\mathbb {C}}}\)-linear way. Hence for any \(a,b,c,d\in {{\mathbb {C}}}\) and \(X,Y,Z,W\in T_{{\mathbb {C}}}M\), we have

$$\begin{aligned} R(aX,bY,cZ, dW)=abcd\cdot R(X,Y,Z,W).\end{aligned}$$

Let (MgJ) be an almost Hermitian manifold, i.e., \(J:T_{{\mathbb {R}}}M\rightarrow T_{{\mathbb {R}}}M\) with \(J^2=-1\), and for any \(X,Y\in T_{{\mathbb {R}}}M\), \( g(JX,JY)=g(X,Y)\). The Nijenhuis tensor \(N_J:\Gamma (M,T_{{\mathbb {R}}}M)\times \Gamma (M,T_{{\mathbb {R}}}M)\rightarrow \Gamma (M,T_{{\mathbb {R}}}M)\) is defined as

$$\begin{aligned} N_J(X,Y)=[X,Y]+J[JX,Y]+J[X,JY]-[JX,JY].\end{aligned}$$

The almost complex structure J is called integrable if \(N_J\equiv 0\) and then we call (MgJ) a Hermitian manifold. We can also extend J to \(T_{{\mathbb {C}}}M\) in the \({{\mathbb {C}}}\)-linear way. Hence for any \(X,Y\in T_{{\mathbb {C}}}M\), we still have \( g(JX,JY)=g(X,Y).\) By Newlander–Nirenberg’s theorem, there exists a real coordinate system \(\{x^i,x^I\}\) such that \(z^i=x^i+\sqrt{-1}x^I\) are local holomorphic coordinates on M. Let’s define a Hermitian form \(h:T_{{\mathbb {C}}}M\times T_{{\mathbb {C}}}M\rightarrow {{\mathbb {C}}}\) by

$$\begin{aligned} h(X,Y):= g(X,Y), \ \ \ \ \ X,Y\in T_{{\mathbb {C}}}M. \end{aligned}$$
(6.1)

By J-invariant property of g,

$$\begin{aligned} h_{ij}:=h\left( \frac{\partial }{\partial z^i},\frac{\partial }{\partial z^j}\right) =0, \quad \text{ and }\quad h_{{{\overline{i}}}{{\overline{j}}}}:=h\left( \frac{\partial }{\partial \overline{z}^i},\frac{\partial }{\partial {{\overline{z}}}^j}\right) =0 \end{aligned}$$
(6.2)

and

$$\begin{aligned} h_{i{{\overline{j}}}}:=h\left( \frac{\partial }{\partial z^i},\frac{\partial }{\partial {{\overline{z}}}^j}\right) =\frac{1}{2}\left( g_{ij}+\sqrt{-1}g_{iJ}\right) . \end{aligned}$$
(6.3)

It is obvious that \((h_{i{{\overline{j}}}})\) is a positive Hermitian matrix. Let \(\omega \) be the fundamental two-form associated to the J-invariant metric g:

$$\begin{aligned} \omega (X,Y)=g(JX,Y). \end{aligned}$$
(6.4)

In local complex coordinates,

$$\begin{aligned} \omega =\sqrt{-1}h_{i{{\overline{j}}}} dz^i\wedge d{{\overline{z}}}^j. \end{aligned}$$
(6.5)

In the local holomorphic coordinates \(\{z^1,\ldots , z^n\}\) on M, the complexified Christoffel symbols are given by

$$\begin{aligned} \Gamma _{AB}^C= & {} \sum _{E}\frac{1}{2}g^{CE}\big (\frac{\partial g_{AE}}{\partial z^B}+\frac{\partial g_{BE}}{\partial z^A}-\frac{\partial g_{AB}}{\partial z^E}\big )\nonumber \\= & {} \sum _{E}\frac{1}{2}h^{CE}\big (\frac{\partial h_{AE}}{\partial z^B}+\frac{\partial h_{BE}}{\partial z^A}-\frac{\partial h_{AB}}{\partial z^E}\big ) \end{aligned}$$
(6.6)

where \(A,B,C,E\in \{1,\ldots ,n,{\overline{1}},\ldots ,{\overline{n}}\}\) and \(z^{A}=z^{i}\) if \(A=i\), \(z^{A}={\overline{z}}^{i}\) if \(A={\overline{i}}\). For example

$$\begin{aligned} \Gamma _{ij}^k=\frac{1}{2}h^{k\overline{\ell }}\left( \frac{\partial h_{j{{\overline{\ell }}}}}{\partial z^i}+\frac{\partial h_{i\overline{\ell }}}{\partial z^j}\right) ,\ \Gamma _{{{\overline{i}}}j}^k=\frac{1}{2}h^{k{\overline{\ell }}}\left( \frac{\partial h_{j{{\overline{\ell }}}}}{\partial {{\overline{z}}}^i}-\frac{\partial h_{j{\overline{i}}}}{\partial {{\overline{z}}}^\ell }\right) . \end{aligned}$$
(6.7)

We also have \(\Gamma _{{{\overline{i}}}{{\overline{j}}}}^k=\Gamma _{ij}^{{{\overline{k}}}}=0\) by the Hermitian property \(h_{pq}=h_{{{\overline{i}}}{{\overline{j}}}}=0\). The complexified curvature components are

$$\begin{aligned} R_{ABC}^D=\sum _ER_{ABCE}h^{ED}=-\left( \frac{\partial \Gamma _{AC}^D}{\partial z^B}-\frac{\partial \Gamma _{BC}^D}{\partial z^A}+\Gamma _{AC}^F\Gamma _{FB}^D-\Gamma _{BC}^F\Gamma _{AF}^D\right) . \end{aligned}$$
(6.8)

By the Hermitian property again, we have

$$\begin{aligned} R_{i{{\overline{j}}}k}^{l}=-\left( \frac{\partial \Gamma ^{l}_{ik}}{\partial {\overline{z}}^j}-\frac{\partial \Gamma ^{l}_{{{\overline{j}}}k}}{\partial z^i}+\Gamma _{ ik}^{s}\Gamma ^{l}_{{{\overline{j}}}s}-\Gamma _{ {{\overline{j}}}k}^{s}\Gamma ^{l}_{ is}-{\Gamma _{{{\overline{j}}} k}^{{{\overline{s}}}}\Gamma _{i{\overline{s}}}^l}\right) . \end{aligned}$$
(6.9)

It is computed in [24, Lemma 7.1] that

Lemma 6.1

On the Hermitian manifold (Mh), the Riemannian Ricci curvature of the Riemannian manifold (Mg) satisfies

$$\begin{aligned} Ric(X,Y)=h^{i{{\overline{\ell }}}}\left[ R\left( \frac{\partial }{\partial z^i}, X,Y, \frac{\partial }{\partial {{\overline{z}}}^\ell }\right) +R\left( \frac{\partial }{\partial z^i}, Y,X, \frac{\partial }{\partial {{\overline{z}}}^\ell }\right) \right] \end{aligned}$$
(6.10)

for any \(X,Y\in T_{{\mathbb {R}}}M\). The Riemannian scalar curvature is

$$\begin{aligned} s=2h^{i{{\overline{j}}}}h^{k{{\overline{\ell }}}}\left( 2R_{i{{\overline{\ell }}} k{{\overline{j}}}}-R_{i{{\overline{j}}} k{{\overline{\ell }}}}\right) . \end{aligned}$$
(6.11)

The following result is established in [24, Corollary 4.2] (see also some different versions in [11]). For readers’ convenience we include a straightforward proof without using “normal coordinates”.

Lemma 6.2

On a compact Hermitian manifold \((M,\omega )\), the Riemannian scalar curvature s and the Chern scalar curvature \(s_{\mathrm C}\) are related by

$$\begin{aligned} s=2s_{\mathrm C}+\left( \langle \partial \partial ^*\omega +{\overline{\partial }}{\overline{\partial }}^*\omega ,\omega \rangle -2|\partial ^*\omega |^2\right) -\frac{1}{2}|T|^2, \end{aligned}$$
(6.12)

where T is the torsion tensor with

$$\begin{aligned} T_{ij}^k=h^{k{{\overline{\ell }}}}\left( \frac{\partial h_{j{{\overline{\ell }}}}}{\partial z^i}-\frac{\partial h_{i{{\overline{\ell }}}}}{\partial z^j}\right) . \end{aligned}$$

Proof

For simplicity, we denote by

$$\begin{aligned} s_\text {R}=h^{i{{\overline{j}}}}h^{k{{\overline{\ell }}}}R_{i{{\overline{\ell }}} k{{\overline{j}}}} \quad \text{ and }\quad s_\text {H}=h^{i{{\overline{j}}}}h^{k{{\overline{\ell }}}}R_{i{{\overline{j}}} k{{\overline{\ell }}}}. \end{aligned}$$

Then, by formula (6.11), we have \(s=4s_\text {R}-2s_\text {H}.\) In the following, we shall show

$$\begin{aligned} s_{\text {H}}=s_{\text {C}}-\frac{1}{2}\langle \partial \partial ^*\omega +{\overline{\partial }}{\overline{\partial }}^*\omega ,\omega \rangle -\frac{1}{4}|T|^2 \end{aligned}$$
(6.13)

and

$$\begin{aligned} s_\text {R}=s_\text {C}-\frac{1}{2}|\partial ^*\omega |^2-\frac{1}{4}|T|^2. \end{aligned}$$
(6.14)

It is easy to show that

$$\begin{aligned} {\overline{\partial }}^*\omega =2\sqrt{-1}\overline{\Gamma _{{\overline{i}}k}^k}dz^i \end{aligned}$$
(6.15)

and so

$$\begin{aligned} -\frac{\partial \partial ^*\omega +{\overline{\partial }}{\overline{\partial }}^*\omega }{2}=\sqrt{-1}\left( \frac{\partial \Gamma _{{\overline{j}} k}^k}{\partial z^i}+\frac{\partial \overline{\Gamma _{{\overline{i}}k}^k}}{\partial {\overline{z}}^j}\right) dz^i\wedge d{{\overline{z}}}^j. \end{aligned}$$
(6.16)

On the other hand, by formula (6.9), we have

$$\begin{aligned} {R}_{i{{\overline{j}}}k}^k=-\frac{\partial \Gamma ^{k}_{ik}}{\partial {{\overline{z}}}^j}+\frac{\partial \Gamma ^{k}_{{{\overline{j}}}k}}{\partial z^i}+{\Gamma _{{{\overline{j}}} k}^{{\overline{s}}}\Gamma _{i{{\overline{s}}}}^k}. \end{aligned}$$
(6.17)

A straightforward calculation shows

$$\begin{aligned} h^{i{{\overline{j}}}} {\Gamma _{{{\overline{j}}} k}^{{{\overline{s}}}}\Gamma _{i{\overline{s}}}^k}=-\frac{1}{4}|T|^2. \end{aligned}$$

Moreover, we have

$$\begin{aligned} \left( -\frac{\partial \Gamma ^{k}_{ik}}{\partial {{\overline{z}}}^j}+\frac{\partial \Gamma ^{k}_{{{\overline{j}}}k}}{\partial z^i}\right) -\left( \frac{\partial \Gamma _{{{\overline{j}}} k}^k}{\partial z^i}+\frac{\partial \overline{\Gamma _{{\overline{i}}k}^k}}{\partial {\overline{z}}^j}\right) =-\frac{\partial \Gamma ^{k}_{ik}}{\partial {\overline{z}}^j}-\frac{\partial \overline{\Gamma _{{\overline{i}}k}^k}}{\partial {\overline{z}}^j}=-\frac{\partial ^2\log \det (g)}{\partial z^i\partial {{\overline{z}}}^j}\nonumber \\ \end{aligned}$$
(6.18)

where the last identity follows from (6.7). Indeed, we have

$$\begin{aligned} \Gamma ^{k}_{ik}+\overline{\Gamma _{{\overline{i}}k}^k}=h^{k{{\overline{\ell }}}}\frac{\partial h_{k{{\overline{\ell }}}}}{\partial z^i}=\frac{\partial \log \det (g)}{\partial z^i}. \end{aligned}$$

Hence, we obtain

$$\begin{aligned} s_\text {H}+\left\langle \frac{\partial \partial ^*\omega +{\overline{\partial }}{\overline{\partial }}^*\omega }{2}, \omega \right\rangle =s_{\text {C}}-\frac{1}{4}|T|^2 \end{aligned}$$

which proves (6.13). Similarly, one can show (6.14). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X. Scalar curvature, Kodaira dimension and \({{\widehat{A}}}\)-genus. Math. Z. 295, 365–380 (2020). https://doi.org/10.1007/s00209-019-02348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02348-z

Navigation