Skip to main content
Log in

Minimal models for Kähler threefolds

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let \(X\) be a compact Kähler threefold that is not uniruled. We prove that \(X\) has a minimal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If \(X\) is projective this is known in arbitrary dimension by [8].

  2. We “twist” the definition from [9] in order to get a group that injects in \(H^2(X, \mathbb {R})\) rather than \(H^2(X, i \mathbb {R}).\)

  3. Since \(X\) has rational singularities we have \(H^1(\hat{X}, \mathbb {R}) \simeq H^1(X, \mathbb {R})\) and \(H^1(\hat{X}, {{\mathcal O}}_{\hat{X}}) \simeq H^1(X, {{\mathcal O}}_X)\) where \(\hat{X} \rightarrow X\) is a resolution by a compact Kähler manifold. Now we apply the classical result from the Kähler case.

  4. The statement in [22, Prop.6.1.iii)] is for compact manifolds, but the proof works in the singular setting.

  5. The statements in [12] are for complex compact manifolds, but generalise immediately to our situation: take \(\mu :X' \rightarrow X\) a desingularisation, and let \(m \in \mathbb {N}\) be the Cartier index of \(K_X\). Then \(\mu ^* (mK_X)\) is a pseudoeffective line bundle with divisorial Zariski decomposition \(\mu ^* (mK_X)= \sum \eta _j S_j' + N(mK_X)'\). The decomposition of \(K_X\) is defined by the push-forwards \(\mu _* (\frac{1}{m} \sum \eta _j S_j')\) and \(\mu _* (\frac{1}{m} N(mK_X)')\). Since a prime divisor \(D \subset X\) is not contained in the singular locus of \(X\), the decomposition has the stated properties.

  6. If \(S_0\) is \(\mathbb {P}^2\) just take the same MMP but omit the last blow-up.

  7. Note that \([\hat{C}] \not \in \mathbb {R}^+ [F]\) since \(\hat{C}\) is not rational.

  8. The cohomology class of a curve \(C \subset X\) is contained in the integral lattice \(H^4(X, \mathbb {Z})\), so the cohomology classes of curves in \(X\) form a discrete set in \(\overline{{NE}}(X)\). Thus for every Kähler form \(\omega '\) there exists a real constant \(\lambda >0\) such that

    $$\begin{aligned} \omega ' \cdot C \ge \lambda \end{aligned}$$

    for every curve \(C \subset X\).

  9. The proof of Theorem 1.3 uses only Theorem 6.3.

  10. Proposition 2.3. in [12] is for compact complex manifolds, but the proof goes through without changes for a variety with isolated singularities. A different way to obtain the decomposition is to take a resolution of singularities \(\nu :X' \rightarrow X\) and consider the nef and big class \(\nu ^* \alpha \). The non-Kähler locus is the union of the \(\nu \)-exceptional locus and the strict transforms of the curves in the non-Kähler locus of \(\alpha \). By [11, Thm.3.1.24] there exists a modification \(\mu ':\tilde{X} \rightarrow X'\) and a Kähler class \(\tilde{\alpha }\) on \(\tilde{X}\) such that \((\mu ')^* \nu ^* \alpha = \tilde{\alpha }+ E\). Then \(\mu :=\nu \circ \mu '\) has the stated properties.

References

  1. Ancona, V., Gaveau, B.: Differential Forms on Singular Varieties: De Rham and Hodge Theory Simplified. Pure and Applied Mathematics (Boca Raton), vol. 273. Chapman & Hall/CRC, Boca Raton (2006)

  2. Ancona, V.: Vanishing and nonvanishing theorems for numerically effective line bundles on complex spaces. Ann. Mat. Pura Appl. 4(149), 153–164 (1987)

    Article  MathSciNet  Google Scholar 

  3. Araujo, C.: The cone of pseudo-effective divisors of log varieties after Batyrev. Math. Z. 264(1), 179–193 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ancona, V., Van Tan, V.: On the blowing down problem in \({ C}\)-analytic geometry. J. Reine Angew. Math. 350, 178–182 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Barlet, D.: Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytique complexe de dimension finie. In: Fonctions de plusieurs variables complexes, II (Sém. François Norguet, 1974–1975), pp. 1–158. Lecture Notes in Mathematics, vol. 482. Springer, Berlin (1975)

  6. Bauer, T., Campana, F., Eckl, T., Kebekus, S., Peternell, T., Rams, S., Szemberg, T., Wotzlaw, L.: A reduction map for nef line bundles. In: Complex Geometry (Göttingen, 2000), pp. 27–36. Springer, Berlin (2002)

  7. Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boucksom, Sébastien, Demailly, Jean-Pierre, Păun, Mihai, Peternell, Thomas: The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebr. Geom. 22, 201–248 (2013)

    Article  MATH  Google Scholar 

  9. Boucksom, S., Guedj, V.: Regularizing properties of the Kähler–Ricci flow. In: Boucksom, S., Eyssidieux, P., Guedj, V. (eds.) An Introduction to the Kähler–Ricci Flow. Lecture Notes in Mathematics, vol. 2086, pp. 189–237. Springer, Cham (2013)

  10. Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 2nd edn, vol. 4. Springer, Berlin (2004)

  11. Boucksom, S.: Cônes positifs des variétés complexes compactes. Thesis (Grenoble) (2002). Permanent url http://tel.archives-ouvertes.fr/tel-00002268/

  12. Boucksom, S.: Divisorial Zariski decompositions on compact complex manifolds. Ann. Sci. École Norm. Sup. (4) 37(1), 45–76 (2004)

  13. Brunella, M.: A positivity property for foliations on compact Kähler manifolds. Int. J. Math. 17(1), 35–43 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Beltrametti, M.C., Sommese, A.J.: The Adjunction Theory of Complex Projective Varieties. de Gruyter Expositions in Mathematics, vol. 16. Walter de Gruyter & Co., Berlin (1995)

  15. Campana, F., Höring, A., Peternell, T.: Abundance for Kähler threefolds (2014, preprint). arXiv:1403.3175

  16. Campana, F., Peternell, T.: Towards a Mori theory on compact Kähler threefolds. I. Math. Nachr. 187, 29–59 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Campana, F., Peternell, T.: Complex threefolds with non-trivial holomorphic \(2\)-forms. J. Algebr. Geom. 9(2), 223–264 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Collins, T.C., Tosatti, V.: Kähler currents and null loci. Inv. math. (2015). doi:10.1007/s00222-015-0585-9

  19. Debarre, O.: Higher-Dimensional Algebraic Geometry. Universitext. Springer, New York (2001)

    Book  MATH  Google Scholar 

  20. Demailly, J.-P.: Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines. Mém. Soc. Math. France (N.S.) 19, 124 (1985)

  21. Demailly, J.-P.: Nombres de Lelong généralisés, théorèmes d’intégralité et d’analyticité. Acta Math. 159(3–4), 153–169 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Demailly, J.-P.: Regularization of closed positive currents and intersection theory. J. Algebr. Geom. 1(3), 361–409 (1992)

    MathSciNet  MATH  Google Scholar 

  23. Demailly, J.-P., Peternell, T.: A Kawamata–Viehweg vanishing theorem on compact Kähler manifolds. J. Differ. Geom. 63(2), 231–277 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Demailly, J.-P., Păun, M.: Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math. (2) 159(3), 1247–1274 (2004)

  25. Demailly, J.-P., Peternell, T., Schneider, M.: Compact complex manifolds with numerically effective tangent bundles. J. Algebr. Geom. 3(2), 295–345 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Fujiki, A.: Closures of orbits of \(\mathbf{C}\) and \(\mathbf{C}^\ast \) actions. Osaka J. Math. 33(2), 365–385 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Pure and Applied Mathematics. Wiley, New York (1978)

  28. Grauert, H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331–368 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  29. Grothendieck, A.: Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962]. Secrétariat mathématique, Paris (1962)

  30. Hartshorne, R.: Ample Subvarieties of Algebraic Varieties. Lecture Notes in Mathematics, vol. 156. Springer, Berlin (1970). Notes written in collaboration with C. Musili

  31. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

  32. Höring, A., Peternell, T.: Mori fibre spaces for Kähler threefolds. J. Math. Sci. Univ. Tokyo 22, 1–28 (2015)

  33. Kawamata, Y.: The cone of curves of algebraic varieties. Ann. Math. (2) 119(3), 603–633 (1984)

  34. Kawamata, Y.: Elementary contractions of algebraic \(3\)-folds. Ann. Math. (2) 119(1), 95–110 (1984)

  35. Kollár, J., Mori, S.: Classification of three-dimensional flips. J. Am. Math. Soc. 5(3), 533–703 (1992)

    Article  MATH  Google Scholar 

  36. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998). With the collaboration of C. H. Clemens and A. Corti

  37. Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem. In: Algebraic Geometry, Sendai, 1985. Advanced Studies in Pure Mathematics, vol. 10, pp. 283–360. North-Holland, Amsterdam (1987)

  38. Kollár, J.: The cone theorem. Note to a paper: “The cone of curves of algebraic varieties” [Ann. Math. (2) 119(3), 603–633 (1984); MR0744865 (86c:14013b)] by Y. Kawamata. Ann. Math. (2) 120(1), 1–5 (1984)

  39. Kollár, J.: Cone theorems and cyclic covers. In: Algebraic Geometry and Analytic Geometry (Tokyo, 1990), ICM-90 Satellite Conference Proceedings, pp. 101–110. Springer, Tokyo (1991)

  40. Kollár, J.: Extremal rays on smooth threefolds. Ann. Sci. École Norm. Sup. (4) 24(3), 339–361 (1991)

  41. Kollár, J.: Rational Curves on Algebraic Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 32. Springer, Berlin (1996)

  42. Mori, S.: Projective manifolds with ample tangent bundles. Ann. Math. (2) 110(3), 593–606 (1979)

  43. Mori, S.: Threefolds whose canonical bundles are not numerically effective. Ann. Math. (2) 116(1), 133–176 (1982)

  44. Mori, S.: Flip theorem and the existence of minimal models for \(3\)-folds. J. Am. Math. Soc. 1(1), 117–253 (1988)

    MATH  Google Scholar 

  45. Nakayama, N.: The lower semicontinuity of the plurigenera of complex varieties. In: Algebraic Geometry, Sendai, 1985. Advanced Studies in Pure Mathematics, vol. 10, pp. 551–590. North-Holland, Amsterdam (1987)

  46. Nakayama, N.. Local structure of an elliptic fibration. In: Higher Dimensional Birational Geometry (Kyoto, 1997). Advanced Studies in Pure Mathematics, vol. 35, pp. 185–295. Mathematical Society of Japan, Tokyo (2002)

  47. Oguiso, K., Peternell, T.: The dual Kähler cone of compact Kähler threefolds. Commun. Anal. Geom. 12(5), 1131–1154 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Păun, M.: Sur l’effectivité numérique des images inverses de fibrés en droites. Math. Ann. 310(3), 411–421 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  49. Peternell, T.: Towards a Mori theory on compact Kähler threefolds. II. Math. Ann. 311(4), 729–764 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Peternell, T.: Towards a Mori theory on compact Kähler threefolds. III. Bull. Soc. Math. Fr. 129(3), 339–356 (2001)

    MathSciNet  MATH  Google Scholar 

  51. Reid, M.: Canonical \(3\)-folds. In: Journées de Géometrie Algébrique d’Angers. Juillet 1979/Algebraic Geometry, Angers, 1979, pp. 273–310. Sijthoff & Noordhoff, Alphen aan den Rijn (1980)

  52. Reid, M.: Minimal models of canonical \(3\)-folds. In: Algebraic Varieties and Analytic Varieties (Tokyo, 1981). Advanced Studies in Pure Mathematics, vol. 1, pp. 131–180. North-Holland, Amsterdam (1983)

  53. Reid, M.: Nonnormal del Pezzo surfaces. Publ. Res. Inst. Math. Sci. 30(5), 695–727 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sakai, F.: Weil divisors on normal surfaces. Duke Math. J. 51(4), 877–887 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  55. Shokurov, V.V.: A nonvanishing theorem. Izv. Akad. Nauk SSSR Ser. Mat. 49(3), 635–651 (1985)

    MathSciNet  Google Scholar 

  56. Siu, Y.T.: Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math. 27, 53–156 (1974)

  57. Varouchas, J.: Kähler spaces and proper open morphisms. Math. Ann. 283(1), 13–52 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the Forschergruppe 790 “Classification of algebraic surfaces and compact complex manifolds” of the Deutsche Forschungsgemeinschaft for financial support. A. Höring was partially also supported by the A.N.R. project CLASS (ANR-10-JCJC-0111). This work was done when A. Höring was member of the Institut de Mathématiques de Jussieu (UPMC). Last but not least we thank the referees for very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Höring.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Höring, A., Peternell, T. Minimal models for Kähler threefolds. Invent. math. 203, 217–264 (2016). https://doi.org/10.1007/s00222-015-0592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-015-0592-x

Mathematics Subject Classification

Navigation