Skip to main content
Log in

Holomorphic Jacobi manifolds and holomorphic contact groupoids

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

This paper belongs to a series of works aiming at exploring generalized (complex) geometry in odd dimensions. Holomorphic Jacobi manifolds were introduced and studied by the authors in a separate paper as special cases of generalized contact bundles. In fact, generalized contact bundles are nothing but odd dimensional analogues of generalized complex manifolds. In the present paper, we solve the integration problem for holomorphic Jacobi manifolds by proving that they integrate to holomorphic contact groupoids. A crucial tool in our proof is what we call the homogenization scheme, which allows us to identify holomorphic Jacobi manifolds with homogeneous holomorphic Poisson manifolds and holomorphic contact groupoids with homogeneous complex symplectic groupoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldi, M., Grandini, D.: Generalized contact geometry and T-duality. J. Geom. Phys. 92, 78–93 (2015). arXiv:1312.7471

    Article  MathSciNet  Google Scholar 

  2. Bailey, M.: Local classification of generalized complex structures. J. Differ. Geom. 95, 1–37 (2013). arXiv:1201.4887

    Article  MathSciNet  Google Scholar 

  3. Blaga, A., Salazar, M.A., Tortorella, A.G., Vizman, C.: Contact dual pairs. arXiv:1903.05250

  4. Blair, D.E.: Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics, vol. 509. Springer-Verlag, Berlin-Heidelberg (1976)

    Book  Google Scholar 

  5. Broka, D., Xu, P.: Symplectic realizations of holomorphic Poisson manifolds. arXiv:1512.08847

  6. Bruce, A.J., Grabowski, J., Grabowska, K.: Remarks on contact and Jacobi geometry. SIGMA 13 (2017). e-print: arXiv:1507.05405

  7. Bursztyn, H., Cabrera, A.: Multiplicative forms at the infinitesimal level. Math. Ann. 353, 663–705 (2012). arXiv:1001.0534

    Article  MathSciNet  Google Scholar 

  8. Bursztyn, H., Cavalcanti, G.R., Gualtieri, M.: Reduction of Courant algebroids and generalized complex structures. Adv. Math. 211, 726–765 (2007). arXiv:math/0509640

    Article  MathSciNet  Google Scholar 

  9. Bursztyn, H., Cabrera, A., del Hoyo, M.: Vector bundles over Lie groupoids and algebroids. Adv. Math. 290, 163–207 (2016). arXiv:1410.5135

    Article  MathSciNet  Google Scholar 

  10. Bursztyn, H., Drummond, T.: Lie theory of multiplicative tensors. arXiv:1705.08579

  11. Cabrera, A., Mărcut, I., Salazar, M.A.: Explicit formulas in Lie theory. arXiv:1809.01546

  12. Cabrera, A., Mărcut, I., Salazar, M.A.: On local integration of Lie brackets, J. reine angew. Math. (2018), (in press). https://doi.org/10.1515/crelle-2018-0011. arXiv:1703.04411

    Article  MathSciNet  Google Scholar 

  13. Chen, Z., Grandini, D., Poon, Y.-S.: Holomorphic Poisson cohomology. Complex Manifolds 2, 34–52 (2015). arXiv:1408.0448

    Article  MathSciNet  Google Scholar 

  14. Crainic, M., Fernandes, R.L.: Lectures on integrability of Lie brackets. Geom. Topol. Monogr. 17, 1–94 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Crainic, M., Salazar, M.A.: Jacobi structures and Spencer operators. J. Math. Pures Appl. 103, 504–521 (2015). arXiv:1309.6156

    Article  MathSciNet  Google Scholar 

  16. Crainic, M., Zhu, C.: Integrability of Jacobi and Poisson structures. Ann. Inst. Fourier 57, 1181–1216 (2007). arXiv:math/0403268

    Article  MathSciNet  Google Scholar 

  17. Crainic, M., Salazar, M.A., Struchiner, I.: Multiplicative forms and Spencer operators. Math. Z. 279, 939–979 (2015). arXiv:1309.6156

    Article  MathSciNet  Google Scholar 

  18. Dazord, P.: Sur l’intégration des algèbres de Lie locales et la préquantification. Bull. Sci. Math. 121, 423–462 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Esposito, C., Tortorella, A.G., Vitagliano, L.: Infinitesimal automorphisms of VB-groupoids and algebroids. Q. J. Math. (2019) (in press). arXiv:1611.06896

  20. Gracia-Saz, A., Mehta, R.A.: VB-groupoids and representation theory of Lie groupoids. J. Sympl. Geom. 15, 741–783 (2015). arXiv:1007.3658

    Article  MathSciNet  Google Scholar 

  21. Gualtieri, M.: Generalized complex geometry. Ann. Math. 174, 75–123 (2011). arXiv:math/0703298

    Article  MathSciNet  Google Scholar 

  22. Hitchin, N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54, 281–308 (2003). arXiv:math/0209099

    Article  MathSciNet  Google Scholar 

  23. Hitchin, N.: Deformations of holomorphic Poisson manifold. Moscow Math. J. 12, 567–591 (2012). arXiv:1105.4775

    Article  MathSciNet  Google Scholar 

  24. Iglesias-Ponte, D., Wade, A.: Contact manifolds and generalized complex structures. J. Geom. Phys. 53, 249–258 (2005). arXiv:math/0404519

    Article  MathSciNet  Google Scholar 

  25. Iglesias-Ponte, D., Laurent-Gengoux, C., Xu, P.: Universal lifting theorem and quasi-Poisson groupoids. J. Eur. Math. Soc. 14, 681–731 (2012). arXiv:math/0507396

    Article  MathSciNet  Google Scholar 

  26. Kerbrat, Y., Souici-Benhammadi, Z.: Variétés de Jacobi et groupoïdes de contact. C. R. Acad. Sci. Paris 317, 81–86 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Kobayashi, S.: Remarks on complex contact manifolds. Proc. Am. Math. Soc. 10, 164–167 (1959)

    Article  MathSciNet  Google Scholar 

  28. Kosmann-Schwarzbach, Y.: Multiplicativity, from Lie groups to generalized geometry. Banach Center Publ. 110, 131–166 (2016). arXiv:1511.02491

    Article  MathSciNet  Google Scholar 

  29. Laurent-Gengoux, C., Stiénon, M., Xu, P.: Holomorphic Poisson manifolds and holomorphic Lie algebroids. Int. Math. Res. Not. 2008, 1–46 (2008). arXiv:0707.4253

    MATH  Google Scholar 

  30. Laurent-Gengoux, C., Stiénon, M., Xu, P.: Integration of holomorphic Lie algebroids. Math. Ann. 345, 895–923 (2009). arXiv:0803.2031

    Article  MathSciNet  Google Scholar 

  31. Lê, H.V., Oh, Y.-G., Tortorella, A.G., Vitagliano, L.: Deformations of coisotropic submanifolds in abstract Jacobi manifolds. J. Sympl. Geom. 16, 1051–1116 (2018). arXiv:1410.8446

    Article  Google Scholar 

  32. Lê, H.V., Tortorella, A.G., Vitagliano, L.: Jacobi bundles and the BFV complex. J. Geom. Phys. 121, 347–377 (2017). arXiv:1601.04540

    Article  MathSciNet  Google Scholar 

  33. Libermann, P.: On symplectic and contact groupoids, in: Diff. Geom. Appl. 29, Proc. Conf. Opava (Czechoslovakia), August 24–28, 1992, Silesian University, Opava, 1993, 29–45

  34. Mackenzie, K.C.H.: Double Lie algebroids and second-order geometry, I. Adv. Math. 94, 180–239 (1992)

    Article  MathSciNet  Google Scholar 

  35. Mackenzie, K.C.H.: Double Lie algebroids and second-order geometry, II. Adv. Math. 15, 46–75 (2000). arXiv:dg-ga/9712013

    Article  MathSciNet  Google Scholar 

  36. Mackenzie, K.C.H.: General theory of Lie groupoids and Lie algebroids. Cambridge Univ. Press, Cambridge (2005)

    Book  Google Scholar 

  37. Mackenzie, K.C.H., Xu, P.: Classical lifting processes and multiplicative vector fields. Q. J. Math. 49, 59–85 (1998)

    Article  MathSciNet  Google Scholar 

  38. Magri, F., Morosi, C.: A Geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds. Quaderno S19, University of Milan (1984)

  39. Marrero, J.-C., Monterde, J., Padrón, E.: Jacobi-Nijenhuis manifolds and compatible Jacobi structures. C. R. Acad. Sci. Paris, Ser. I 329, 797–802 (1999)

    Article  MathSciNet  Google Scholar 

  40. Poon, Y.S., Wade, A.: Generalized contact structures. J. London Math. Soc. 2011 333–352. arXiv:0912.5314

    Article  MathSciNet  Google Scholar 

  41. Sekiya, K.: Generalized almost contact structures and generalized Sasakian structures. Osaka J. Math. 52, 43–59 (2015). arXiv:1212.6064

    MathSciNet  MATH  Google Scholar 

  42. Stiénon, M., Xu, P.: Poisson quasi-Nijenhuis manifolds. Commun. Math. Phys. 270, 709–725 (2007). arXiv:math/0602288

    Article  MathSciNet  Google Scholar 

  43. Vaisman, I.: Generalized \(CRF\)-structures. Geom. Dedicata 133, 129–154 (2008). arXiv:0705.3934v2

    Article  MathSciNet  Google Scholar 

  44. Vitagliano, L., Wade, A.: Holomorphic Jacobi manifolds. arXiv:1609.07737

  45. Vitagliano, L.: Dirac-Jacobi bundles. J. Sympl. Geom. 16, 485–561 (2018). arXiv:1502.05420

    Article  MathSciNet  Google Scholar 

  46. Vitagliano, L., Wade, A.: Generalized contact bundles. C. R. Math. 354, 313–317 (2016). arXiv:1507.03973

    Article  MathSciNet  Google Scholar 

  47. Wade, A.: Local structure of generalized contact manifolds. Diff. Geom. Appl. 30, 124–135 (2012)

    Article  MathSciNet  Google Scholar 

  48. Zambon, M., Zhu, C.: Contact reduction and groupoid actions. Trans. Am. Math. Soc. 358, 1365–1401 (2006). arXiv:math/0405047

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Alfonso G. Tortorella for providing a proof of Proposition 2.7.5. We also thank Damien Broka, Mathieu Stiénon, and Ping Xu for useful discussions. L. V. is member of the GNSAGA, INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Vitagliano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitagliano, L., Wade, A. Holomorphic Jacobi manifolds and holomorphic contact groupoids. Math. Z. 294, 1181–1225 (2020). https://doi.org/10.1007/s00209-019-02320-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02320-x

Keywords

Mathematics Subject Classification

Navigation