Skip to main content
Log in

Real embedding and equivariant eta forms

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Bismut and Zhang (Math Ann 295(4):661–684, 1993) establish a \({\mathrm {mod}}\, \mathbb {Z}\) embedding formula of Atiyah–Patodi–Singer reduced eta invariants. In this paper, we explain the hidden \({\mathrm {mod}}\, \mathbb {Z}\) term as a spectral flow and extend this embedding formula to the equivariant family case. In this case, the spectral flow is generalized to the equivariant Chern character of some equivariant Dai–Zhang higher spectral flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The author thanks Prof. Xiaonan Ma for pointing out this simplification, which is related to a remark in [8, Section 7.5].

  2. One example is the exterior bundle with the \(\mathbb {Z}_2\)-grading induced by the Hodge star operator (see e.g., [5, pp. 150]).

References

  1. Atiyah, M.F., Hirzebruch, F.: Riemann–Roch theorems for differentiable manifolds. Bull. Am. Math. Soc. 65, 276–281 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Camb. Philos. Soc. 77, 43–69 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atiyah, M.F., Singer, I.M.: Index theory for skew-adjoint Fredholm operators. Inst. Hautes Études Sci. Publ. Math. 37, 5–26 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atiyah, M.F., Singer, I.M.: The index of elliptic operators. IV. Ann. Math. 2(93), 119–138 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Grundlehren Text Editions. Springer, Berlin (2004) (Corrected reprint of the 1992 original)

  6. Bismut, J.-M.: The Atiyah–Singer index theorem for families of Dirac operators: two heat equation proofs. Invent. Math. 83(1), 91–151 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bismut, J.-M.: Equivariant immersions and Quillen metrics. J. Differ. Geom. 41(1), 53–157 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bismut, J.-M.: Holomorphic families of immersions and higher analytic torsion forms. Astérisque 244, viii+275 (1997)

  9. Bismut, J.-M., Cheeger, J.: \(\eta \)-invariants and their adiabatic limits. J. Am. Math. Soc. 2(1), 33–70 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Bismut, J.-M., Freed, D.: The analysis of elliptic families. I. Metrics and connections on determinant bundles. Commun. Math. Phys. 106(1), 159–176 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bismut, J.-M., Lebeau, G.: Complex immersions and Quillen metrics. Inst. Hautes Études Sci. Publ. Math. 74, ii+298 (1992)

  12. Bismut, J.-M., Ma, X.: Holomorphic immersions and equivariant torsion forms. J. Reine Angew. Math. 575, 189–235 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Bismut, J.-M., Zhang, W.: Real embeddings and eta invariants. Math. Ann. 295(4), 661–684 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bunke, U., Ma, X.: Index and secondary index theory for flat bundles with duality. In: Aspects of Boundary Problems in Analysis and Geometry. Operator Theory: Advances and Applications, vol. 151, pp. 265–341. Birkhäuser, Basel (2004)

  15. Bunke, U., Schick, T.: Smooth \(K\)-theory. Astérisque 328(45–135), 2009 (2010)

    MATH  Google Scholar 

  16. Bunke, U., Schick, T.: Differential orbifold K-theory. J. Noncommut. Geom. 7(4), 1027–1104 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dai, X.: Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence. J. Am. Math. Soc. 4(2), 265–321 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dai, X., Zhang, W.: Higher spectral flow. J. Funct. Anal. 157(2), 432–469 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dai, X., Zhang, W.: Real embeddings and the Atiyah–Patodi–Singer index theorem for Dirac operators. Asian J. Math. 4(4), 775–794 (2000) (Loo-Keng Hua: a great mathematician of the twentieth century)

  20. Donnelly, H.: Eta invariants for \(G\)-spaces. Indiana Univ. Math. J. 27(6), 889–918 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng, H., Xu, G., Zhang, W.: Real embeddings, \(\eta \)-invariant and Chern–Simons current. Pure Appl. Math. Q. 5(3), 1113–1137 (2009) (Special Issue: In honor of Friedrich Hirzebruch. Part 2)

  22. Freed, D.S., Lott, J.: An index theorem in differential \(K\)-theory. Geom. Topol. 14(2), 903–966 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  24. Liu, B.: Equivariant eta forms and equivariant differential \(K\)-theory (2016). arXiv:1610.02311

  25. Liu, B.: Functoriality of equivariant eta forms. J. Noncommut. Geom. 11(1), 225–307 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, X.: Functoriality of real analytic torsion forms. Isr. J. Math. 131, 1–50 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, vol. 254. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  28. Quillen, D.: Superconnections and the Chern character. Topology 24(1), 89–95 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Segal, G.: Equivariant \(K\)-theory. Inst. Hautes Études Sci. Publ. Math. 34, 129–151 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  30. Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 17–86 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, W.: \(\eta \)-invariant and Chern–Simons current. Chin. Ann. Math. Ser. B 26(1), 45–56 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the many helpful discussions with Prof. Xiaonan Ma and Shu Shen during the preparation of this paper. He wishes to thank University of California, Santa Barbara, especially Prof. Xianzhe Dai for financial support and hospitality. Part of the work was done while the author was visiting Institut des Hautes Études Scientifiques (IHES) and Max Planck Institute for Mathematics (MPIM) which he thanks the financial support. The author is indebted to a referee for his careful reading and helpful comments on an earlier version of this paper. This research is partially supported by the China Postdoctoral Science Foundation (2017M621404) and Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B. Real embedding and equivariant eta forms. Math. Z. 292, 849–878 (2019). https://doi.org/10.1007/s00209-018-2119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2119-9

Keywords

Mathematics Subject Classification

Navigation