Skip to main content
Log in

On \({\mathbb {Z}}_p\)-orbifold constructions of the Moonshine vertex operator algebra

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For \(p = 3,5,7,13\), we consider a \({\mathbb {Z}}_p\)-orbifold construction of the Moonshine vertex operator algebra \(V^\natural \). We show that the vertex operator algebra obtained by the \({\mathbb {Z}}_p\)-orbifold construction on the Leech lattice vertex operator algebra \(V_\Lambda \) and a lift of a fixed-point-free isometry of order p is isomorphic to the Moonshine vertex operator algebra \(V^\natural \). We also describe the relationship between those \({\mathbb {Z}}_p\)-orbifold constructions and the \({\mathbb {Z}}_2\)-orbifold construction in a uniform manner. In Appendix, we give a characterization of the Moonshine vertex operator algebra \(V^\natural \) by the existence of an orthogonal pair of Ising vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakalov, B., Kac, V.G.: Twisted Modules over Lattice Vertex Algebras in Lie Theory and Its Applications in Physics V, pp. 3–26. World Scientific Publishing, River Edge (2004)

    MATH  Google Scholar 

  2. Borcherds, R.: Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109, 405–444 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carnahan, S., Miyamoto, M.: Regularity of fixed-point vertex operator subalgebras. (2016). arXiv:1603.05645

  4. Chen, H.Y., Lam, C.H., Shimakura, H.: \(Z_3\)-orbifold construction of the Moonshine vertex operator algebra and some maximal \(3\)-local subgroups of the Monster. Math. Z. https://doi.org/10.1007/s00209-017-1878-z

  5. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: ATLAS of Finite Groups. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  6. Conway, J.H., Norton, S.P.: Monstrous moonshine. Bull. Lond. Math. Soc. 11(3), 308–339 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, C., Griess, R.L., Höhn, G.: Framed vertex operator algebras, codes and Moonshine module. Commun. Math. Phys. 193, 407–448 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, C., Jiao, X., Xu, F.: Quantum dimensions and quantum Galois theory. Trans. Am. Math. Soc. 365(12), 6441–6469 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, C., Lam, C.H., Wang, Q., Yamada, H.: The structure of parafermion vertex operator algebras. J. Algebra 323, 371–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, C., Lam, C.H., Yamada, H.: \(W\)-algebras related to parafermion algebras. J. Algebra 322, 2366–2403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dong, C., Lepowsky, J.: The algebraic structure of relative twisted vertex operators. J. Pure Appl. Math. 110, 259–295 (1996)

    MATH  Google Scholar 

  12. Dong, C., Li, H., Mason, G.: Modular-invariance of trace functions in orbifold theory and generalized Moonshine. Commun. Math. Phys. 214, 1–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, C., Mason, G.: The construction of the moonshine module as a \({\mathbb{Z}}_p\)-orbifold. In: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups (South Hadley, MA, 1992), pp. 37–52. Contemporary Mathematics, vol. 175. American Mathematical Society, Providence (1994)

  14. Dong, C., Mason, G.: On quantum Galois theory. Duke Math. J. 86, 305–321 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dong, C., Mason, G.: Rational vertex operator algebras and the effective central charge. Int. Math. Res. Not. 56, 2989–3008 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, C., Mason, G.: Holomorphic vertex operator algebras of small central charge. Pac. J. Math. 213, 253–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dong, C., Nagatomo, K.: Automorphism groups and twisted modules for lattice vertex operator algebras. Contemp. Math. 248, 117–133 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dong, C., Ren, L., Xu, F.: On orbifold theory. Adv. Math. 321, 1–30 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. van Ekeren, J., Möller, S., Scheithauer, N.R.: Construction and classification of holomorphic vertex operator algebras. J. Reine Angew. Math. (2015). https://doi.org/10.1515/crelle-2017-0046

  20. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Applied Mathematics, vol. 134. Academic Press, Boston (1988)

  21. Griess Jr., R.L., Lam, C.H.: A moonshine path for \(5A\) and associated lattices of ranks \(8\) and \(16\). J. Algebra 331, 338–361 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krauel, M., Miyamoto, M.: A modular invariance property of multivariable trace functions for regular vertex operator algebras. J. Algebra 444, 124–142 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lam, C.H., Sakuma, S., Yamauchi, H.: Ising vectors and automorphism groups of commutant subalgebras related to root systems. Math. Z. 255(3), 597–626 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lam, C.H., Yamada, H., Yamauchi, H.: Vertex operator algebras, extended \(E_8\) diagram, and McKay’s observation on the Monster simple group. Trans. Am. Math. Soc. 359(9), 4107–4123 (2007)

    Article  MATH  Google Scholar 

  25. Lam, C.H., Yamauchi, H.: A characterization of the moonshine vertex operator algebra by means of Virasoro frames. Int. Math. Res. Not. 2007 (2007). https://doi.org/10.1093/imrn/rnm003

  26. Lam, C.H., Yamauchi, H.: On the structure of framed vertex operator algebras and their pointwise frame stabilizers. Commun. Math. Phys. 277, 237–285 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lepowsky, J.: Calculus of twisted vertex operators. Proc. Natl. Acad. Sci. USA 82, 8295–8299 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Miyamoto, M.: Griess algebras and conformal vectors in vertex operator algebras. J. Algebra 179, 528–548 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Miyamoto, M.: A new construction of the Moonshine vertex operator algebra over the real number field. Ann. Math. 159, 535–596 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miyamoto, M.: A \(\mathbb{Z}_3\)-orbifold theory of lattice vertex operator algebra and \(\mathbb{Z}_3\)-orbifold constructions. In: Symmetries, Integrable Systems and Representations. Springer Proceedings in Mathematics and Statistics, vol. 40, pp. 319–344. Springer, Heidelberg (2013)

  31. Miyamoto, M.: \(C_2\)-cofiniteness of cyclic-orbifold models. Commun. Math. Phys. 335, 1279–1286 (2015)

    Article  MATH  Google Scholar 

  32. Miyamoto, M., Tanabe, K.: Uniform product of \(A_{g, n}(V)\) for an orbifold model \(V\) and \(G\)-twisted Zhu algebra. J. Algebra 274, 80–96 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Möller, S.: A cyclic orbifold theory for holomorphic vertex operator algebras and applications. Ph.D. thesis, Technische Universität Darmstadt, Darmstadt. (2016). arXiv:1611.09843

  34. Shimakura, H.: Lifts of automorphisms of vertex operator algebras in simple current extensions. Math. Z. 256(3), 491–508 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tanabe, K., Yamada, H.: Fixed point subalgebras of lattice vertex operator algebras by an automorphism of order three. J. Math. Soc. Jpn. 65, 1169–1242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yamauchi, H.: Module categories of simple current extensions of vertex operator algebras. J. Pure Appl. Algebra 189, 315–328 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Kenichiro Tanabe and Hiroshi Yamauchi for stimulating and valuable discussions and Masaaki Kitazume and Naoki Chigira for consultations about the Leech lattice. They also thank Scott Carnahan for pointing out a mistake in the early version. The authors thank the referee for the useful comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Abe.

Additional information

T.A. is partially supported by JSPS fellow 15K04823. C.L. is partially supported by MoST Grant 104-2115-M-001-004-MY3 of Taiwan.

Appendix A: A characterization of the Moonshine VOA

Appendix A: A characterization of the Moonshine VOA

In this appendix, we give another characterization of the Moonshine VOA \(V^\natural \) using Ising vectors. It also provides an alternative proof that \(\widetilde{V}_{\Lambda ,\tau } \cong V^\natural \) for \(p=3\) and 5. The main theorem is as follows.

Theorem A.1

Let V be a simple,  rational,  \(C_2\)-cofinite,  holomorphic VOA of CFT-type with central charge 24 such that the weight 1 subspace \(V_1 = 0\). If there is an orthogonal pair of Ising vectors of V,  then V is isomorphic to the Moonshine VOA \(V^\natural \).

The idea is essentially the same as in [25] and is also similar to that in Sect. 4. We try to obtain the Leech lattice VOA \(V_\Lambda \) by using some \({\mathbb {Z}}_2\)-orbifold construction on V. The extra assumption on Ising vectors is used to define an involution on V such that the corresponding twisted module has conformal weight one.

An element \(e\in V_2\) is called an Ising vector if the vertex subalgebra \(\mathrm {Vir}(e)\) generated by e is isomorphic to the simple Virasoro VOA L(1 / 2, 0) of central charge 1 / 2. Let \(V_e(h)\) be the sum of all irreducible \(\mathrm {Vir}(e)\)-submodules of V isomorphic to L(1 / 2, h) for \(h=0,1/2,1/16\). Then one has an isotypical decomposition:

$$\begin{aligned} V=V_e(0)\oplus V_e\left( \frac{1}{2}\right) \oplus V_e\left( \frac{1}{16}\right) . \end{aligned}$$

Recall from [28] that the linear automorphism \(\tau _e\) which acts as 1 on \(V_e(0)\oplus V_e(\frac{1}{2})\) and \(-1\) on \(V_e(\frac{1}{16})\) defines an automorphism of the VOA V. On the fixed point subVOA \(V^{\langle \tau _e\rangle }=V_e(0)\oplus V_e(\frac{1}{2})\), the linear automorphism \(\sigma _e\) which acts as 1 on \(V_e(0)\) and \(-1\) on \(V_e(\frac{1}{2})\) also defines an automorphism on \(V^{\langle \tau _e\rangle }\).

Let e and f be two Ising vectors in V. If \(e_{(i)}f=0\) for any \(i\in {\mathbb {Z}}_{\ge 0}\) then it is said that e and f are orthogonal. We take an orthogonal pair (ef) of Ising vectors, and let U be the subVOA generated by e and f. Then

$$\begin{aligned} U = \mathrm {Vir}(e) \otimes \mathrm {Vir}(f) \cong L\left( \frac{1}{2},0\right) \otimes L\left( \frac{1}{2},0\right) . \end{aligned}$$

For any \(h_1, h_2\in \{0, 1/2, 1/16\}\), we define the space of multiplicities of the irreducible U-module \(L(\frac{1}{2}, h_1) \otimes L(\frac{1}{2},h_2)\) in V by

$$\begin{aligned} M(h_1, h_2)=\hom _{U}\left( L\left( \frac{1}{2}, h_1\right) \otimes L\left( \frac{1}{2},h_2\right) ,V\right) . \end{aligned}$$

Then we have the isotypical decomposition

$$\begin{aligned} V= \bigoplus _{h_1, h_2\in \{ 0, \frac{1}{2}, \frac{1}{16}\}} L\left( \frac{1}{2}, h_1\right) \otimes L\left( \frac{1}{2},h_2\right) \otimes M(h_1, h_2). \end{aligned}$$

Notice that \(M(0,0) =\mathrm {Com}_V(U) = U^c\) is a subVOA of central charge 23 and \(M(h_1, h_2)\), \(h_1, h_2\in \{0, 1/2, 1/16\}\), are M(0, 0)-modules. Note also that

$$\begin{aligned} (V^{\langle \tau _e, \tau _f\rangle })^{\langle \sigma _e, \sigma _f\rangle } = L\left( \frac{1}{2}, 0\right) \otimes L\left( \frac{1}{2},0\right) \otimes M(0, 0). \end{aligned}$$

Proposition A.2

The subVOA M(0, 0) is \(C_2\)-cofinite and rational. Moreover,  \(M(h_1, h_2),\) \(h_1, h_2\in \{0, 1/2\},\) are simple current modules of M(0, 0).

Proof

Let \(E=\langle \tau _e, \tau _f\rangle \subset {{\mathrm{Aut}}}V\) be the subgroup generated by the Miyamoto involutions \(\tau _e\) and \(\tau _f\). Then E is elementary abelian of order 4 and the fixed point subVOA is

$$\begin{aligned} V^E = \bigoplus _{h_1, h_2\in \{0, \frac{1}{2}\}} L\left( \frac{1}{2}, h_1\right) \otimes L\left( \frac{1}{2},h_2\right) \otimes M(h_1, h_2). \end{aligned}$$

Then \(V^E\) is \(C_2\)-cofinite and rational by a result of Carnahan and Miyamoto [3, 31].

Let \(S=\langle \sigma _e, \sigma _f\rangle \subset {{\mathrm{Aut}}}V^E\). Then S is also elementary abelian and hence the fixed point subVOA

$$\begin{aligned} W= (V^E)^S = L\left( \frac{1}{2}, 0\right) \otimes L\left( \frac{1}{2},0\right) \otimes M(0, 0) \end{aligned}$$

is \(C_2\)-cofinite and rational. Therefore, M(0, 0) is also \(C_2\)-cofinite and rational.

That \(M(h_1, h_2)\), \(h_1, h_2\in \{0, 1/2\}\), are simple current modules of M(0, 0) follows from the fact that \(L(\frac{1}{2}, h_1) \otimes L(\frac{1}{2},h_2)\otimes M(h_1, h_2)\) are common eigenspaces of S on \(V^E\) and [8, Remark 6.4]. \(\square \)

Notation A.3

For \(i,j\in \{0,1\}\), let \(V^{(i,j)} = \{v\in V\mid \tau _e v=(-1)^iv, \tau _f v=(-1)^jv\}\). Then

$$\begin{aligned} V^{\left( 0,0\right) }= & {} V^E = \bigoplus _{h_1, h_2\in \{0, \frac{1}{2}\}} L\left( \frac{1}{2}, h_1\right) \otimes L\left( \frac{1}{2},h_2\right) \otimes M\left( h_1, h_2\right) ,\\ V^{\left( 1,0\right) }= & {} L\left( \frac{1}{2}, \frac{1}{16}\right) \otimes L\left( \frac{1}{2},0\right) \otimes M\left( \frac{1}{16}, 0\right) \oplus L\left( \frac{1}{2}, \frac{1}{16}\right) \otimes L\left( \frac{1}{2},\frac{1}{2}\right) \otimes M\left( \frac{1}{16}, \frac{1}{2}\right) , \\ V^{\left( 0,1\right) }= & {} L\left( \frac{1}{2},0\right) \otimes L\left( \frac{1}{2}, \frac{1}{16}\right) \otimes M\left( 0, \frac{1}{16}\right) \oplus L\left( \frac{1}{2},\frac{1}{2}\right) \otimes L\left( \frac{1}{2}, \frac{1}{16}\right) \otimes M\left( \frac{1}{2},\frac{1}{16}\right) , \\ V^{\left( 1,1\right) }= & {} L\left( \frac{1}{2}, \frac{1}{16}\right) \otimes L\left( \frac{1}{2}, \frac{1}{16}\right) \otimes M\left( \frac{1}{16}, \frac{1}{16}\right) . \end{aligned}$$

Notice that \(V^{(i,j)}, i,j\in \{0,1\},\) are simple current modules of \(V^E\) [8].

Lemma A.4

Let V be a simple,  rational,  \(C_2\)-cofinite,  holomorphic VOA of CFT type with central charge 24 such that \(V_1=0\). Assume that there exists an orthogonal pair of Ising vectors. Then \(M(h_1, h_2)\ne 0\) for any \(h_1, h_2\in \{0,\frac{1}{2}, \frac{1}{16}\}\).

Proof

Recall \(U = \mathrm {Vir}(e) \otimes \mathrm {Vir}(f)\cong L(\frac{1}{2}, 0) \otimes L(\frac{1}{2},0)\). Then the double commutant \((U^c)^c\) is an extension of U. Note that there is only one non-trivial extension of U, which is isomorphic to \(L(\frac{1}{2}, 0) \otimes L(\frac{1}{2},0) \oplus L(\frac{1}{2}, \frac{1}{2}) \otimes L(\frac{1}{2},\frac{1}{2})\) and the weight one subspace is non-zero. Hence \((U^c)^c=U\), for \(V_1=0\). Therefore, by a result of Krauel and Miyamoto [22], all irreducible modules of U must appear as a submodule of V since V is holomorphic and U and M(0, 0) are \(C_2\)-cofinite and rational. It implies \(M(h_1, h_2)\ne 0\) for any \(h_1, h_2\in \{0,\frac{1}{2}, \frac{1}{16}\}\). \(\square \)

From now on, let V be as in Lemma A.4. The following two results follow immediately from the general arguments on simple current extensions [26, 36].

Lemma A.5

Let \(M= L(\frac{1}{2}, \frac{1}{2}) \otimes L(\frac{1}{2}, \frac{1}{2}) \otimes M(0, 0)\) and set

$$\begin{aligned} \widetilde{M} = \bigoplus _{h_1, h_2\in \{0, \frac{1}{2}\}} L\left( \frac{1}{2}, \frac{1}{2}-h_1\right) \otimes L\left( \frac{1}{2}, \frac{1}{2}-h_2\right) \otimes M(h_1, h_2). \end{aligned}$$

Then \(\widetilde{M}\) is an irreducible module of \(V^E\).

Theorem A.6

Let \(t=\tau _e\tau _f\) and set

$$\begin{aligned} X=\bigoplus _{i,j \in \{0,1\}} V^{(i,j)} \boxtimes _{V^E} \widetilde{M}. \end{aligned}$$

Then X is an irreducible t-twisted module of V.

Define

$$\begin{aligned} \widetilde{V}= V^{\langle t\rangle }\oplus X^{\langle t\rangle }, \end{aligned}$$

where \(X^{\langle t\rangle }\) is the irreducible \(V^{\langle t\rangle }\)-submodule of X which has integral weights. Then \(\widetilde{V}\) is a simple, rational, \(C_2\)-cofinite, holomorphic VOA of CFT-type. Notice that the conformal weight of \(M= L(\frac{1}{2}, \frac{1}{2}) \otimes L(\frac{1}{2}, \frac{1}{2}) \otimes M(0, 0)\) is 1 and M is an \(L(\frac{1}{2}, 0) \otimes L(\frac{1}{2}, 0) \otimes M(0, 0)\)-submodule of \(X^{\langle t \rangle }\). Hence, \((X^{\langle t\rangle })_1\ne 0\) and \((\widetilde{V})_1\ne 0\). Since \(V_1=0\), we have \(\tilde{V}_1= (X^{\langle t\rangle })_1\) and hence the Lie algebra on \(\tilde{V}_1\) is abelian. Thus we have the following theorem.

Theorem A.7

The VOA \(\widetilde{V}\) is isomorphic to the Leech lattice VOA \(V_\Lambda \).

Now we are ready to prove our main theorem.

Proof of Theorem A.1

By Theorem A.7, we know that the VOA \(\widetilde{V}\) is isomorphic to the Leech lattice VOA \(V_\Lambda \). Let g be the automorphism of \(\widetilde{V}\) which acts as 1 on \(V^{\langle t\rangle }\) and \(-1\) on \(X^{\langle t\rangle }\). Then g is conjugate to the lift \(\theta \) of the \(-1\) map on \(\Lambda \) since g acts on \(\widetilde{V}_1\) as \(-1\) (cf. Theorem 4.3). Therefore, we have \(\widetilde{V}^{\langle g\rangle }=V^{\langle t\rangle }\cong V_\Lambda ^+\). Then by the same argument as in Theorem 4.5, we have

$$\begin{aligned} V\cong V_\Lambda ^+ \oplus V_\Lambda ^{T,+}\cong V^\natural \end{aligned}$$

as \(V_\Lambda ^+\)-modules. Then by the uniqueness of simple current extensions, we can establish the desired isomorphism between V and \(V^\natural \). \(\square \)

Remark A.8

Recall that the Leech lattice \(\Lambda \) contains a sublattice isometric to \(\sqrt{2}E_8^{\oplus 3}\). For \(p=3, 5\), we can choose a fixed-point-free isometry \(\tau \) of order p such that each direct summand of \(\sqrt{2}E_8^{\oplus 3}\) is stabilized; indeed, \(\sqrt{2}E_8^{\oplus 3}\) contains \(\sqrt{2}A_2^{\oplus 12}\) and \(\sqrt{2}A_4^{\oplus 6}\) as sublattices and the fixed-point-free isometry of \(\Lambda \) of order 3 (resp. 5) can be induced by the Coxeter element of \(A_2\) (resp. \(A_4\)). Thus, we have \((V_{\sqrt{2}E_8}^{\langle \tau \rangle } )^{\otimes 3} \subset V_{\Lambda }^{\langle \tau \rangle }\). Let \(\theta \in {{\mathrm{Aut}}}V_{\sqrt{2}E_8}\) be a lift of the \(-1\)-isometry of \(\sqrt{2}E_8\). Then \(\theta \) and \(\tau \) commutes. Since \(V_{\sqrt{2}E_8}^{\langle \theta \rangle } \) has exactly 496 Ising vectors [23, Proposition 4.3] and 496 is relatively prime to p, there exists an Ising vector in \(V_{\sqrt{2}E_8}^{\langle \theta \rangle }\) fixed by \(\tau \). Hence \(V_{\Lambda }^{\langle \tau \rangle }\) contains a pair of (in fact, three) orthogonal Ising vectors. By Theorem A.1, we have \(\widetilde{V}_{\Lambda , \tau } \cong V^\natural \), also.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, T., Lam, C.H. & Yamada, H. On \({\mathbb {Z}}_p\)-orbifold constructions of the Moonshine vertex operator algebra. Math. Z. 290, 683–697 (2018). https://doi.org/10.1007/s00209-017-2036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-2036-3

Keywords

Mathematics Subject Classification

Navigation