Skip to main content
Log in

On dual pairs in Dirac geometry

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this note we discuss (weak) dual pairs in Dirac geometry. We show that this notion appears naturally when studying the problem of pushing forward a Dirac structure along a surjective submersion, and we prove a Dirac-theoretic version of Libermann’s theorem from Poisson geometry. Our main result is an explicit construction of self-dual pairs for Dirac structures. This theorem not only recovers the global construction of symplectic realizations from Crainic and Mărcuţ (J Symplectic Geom 9(4):435–444, 2011), but allows for a more conceptual understanding of it, yielding a simpler and more natural proof. As an application of the main theorem, we present a different approach to the recent normal form theorem around Dirac transversals from Bursztyn et al. (J für die reine und angewandte Mathematik (Crelles J), doi:10.1515/crelle-2017-0014, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the literature [7, 10, 38], a symplectic realization in our sense, in which the Poisson map is required to be submersive, is called a full symplectic realization.

  2. Since the inception of Dirac geometry in the work of Courant [16], many people worked on the field, and there are several good sources available. For background material on Dirac structures particularly close in spirit to the present note, we refer the reader to e.g. [2, 11, 23, 31]. For the specific conventions and notations used in this paper, we refer the reader to Sect. 2.

References

  1. Alekseev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Differ. Geom. 48, 445–495 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekseev, A., Bursztyn, H., Meinrenken, E.: Pure Spinors on Lie groups. Astérisque 327, 131–199 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Bailey, M., Cavalcanti, G., Duran, J.V.D.L.: Blow-ups in generalized complex geometry. arXiv:1602.02076 (preprint)

  4. Cabrera, A., Mărcuţ, I., Salazar, M.A.: A construction of local Lie groupoids using Lie algebroid sprays. arXiv:1703.04411 (preprint)

  5. Blohmann, C.: Removable presymplectic singularities and the local splitting of Dirac structures. Int. Math. Res. Not. (2016). doi:10.1093/imrn/rnw238

  6. Brahic, O., Fernandes, R.L.: Integrability and reduction of Hamiltonian actions on Dirac manifolds. Indag. Math. 25(5), 901–925 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bursztyn, H., Radko, O.: Gauge equivalence of Dirac structures and symplectic groupoids. Ann. de l’Institut Fourier 53(1), 309–337 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bursztyn, H., Weinstein, A.: Picard groups in Poisson geometry. Mosc. Math. J. 4, 39–66 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Bursztyn, H., Weinstein, A.: Poisson geometry and Morita equivalence, Poisson geometry, deformation quantisation and group representations. Lond. Math. Soc. Lect. Note Ser. 323, 1–78 (2005)

    MATH  Google Scholar 

  10. Bursztyn, H., Crainic, M., Weinstein, A., Zhu, C.: Integration of twisted Dirac brackets. Duke Math. J. 123(3), 549–607 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bursztyn, H.: A brief introduction to Dirac manifolds, Geometric and topological methods for quantum field theory, pp. 4–38. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  12. Bursztyn, H., Noseda, F., Zhu, C.: Principal actions of stacky Lie groupoids. arXiv:1510.09208 (preprint)

  13. Bursztyn, H., Lima, H., Meinrenken, E.: Splitting theorems for Poisson and related structures. J. für die reine und angewandte Math. (Crelles J.) (2017). doi:10.1515/crelle-2017-0014

  14. Calvo, I., Falceto, F., Zambon, M.: Deformation of Dirac structures along isotropic subbundles. Rep. Math. Phys. 65(2), 259–269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cattaneo, A., Dherin, B., Weinstein, A.: Integration of Lie algebroid comorphisms. Port. Math. 70(2), 113–144 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Courant, T.J.: Dirac Manifolds. Trans. Am. Math. Soc. 319(2), 631–661 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Crainic, M., Fernandes, R.L.: Integrability of Lie brackets. Ann. Math. 157, 575–620 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Crainic, M., Fernandes, R.L.: Integrability of Poisson brackets. J. Differ. Geom. 66, 71–137 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Crainic, M., Mărcuţ, I.: On the existence of symplectic realizations. J. Symplectic Geom. 9(4), 435–444 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Coste, A., Dazord, P., Weinstein, A.: Groupoïdes symplectiques. Publ. Dép. Math. Nouvelle Ser. A 2, 1–62 (1987)

    MATH  Google Scholar 

  21. Frejlich, P., Mărcuţ, I.: The normal form theorem around Poisson transversals. Pac. J. Math. 287(2), 371–391 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frejlich, P., Mărcuţ, I.: Normal forms for Poisson maps and symplectic groupoids around Poisson transversals. Lett. Math. Phys. arXiv:1508.05670

  23. Gualtieri, M.: Generalized complex geometry. Ann. Math. 174(1), 75–123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ginzburg, V.L., Lu, J.-H.: Poisson cohomology of Morita-equivalent Poisson manifolds. Int. Math. Res. Not. 1992(10), 199–205 (1992)

  25. Ginzburg, V.L.: Grothendieck Groups of Poisson vector bundles. J. Symplectic Geom. 1(1), 121–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Karasëv, M.V.: Analogues of objects of the theory of Lie groups for nonlinear Poisson brackets. Izv. Akad. Nauk SSSR Ser. Mat. 50(3), 508–538 (1986)

    MathSciNet  MATH  Google Scholar 

  27. Klimčík, C., Ströbl, T.: WZW-Poisson manifolds. J. Geom. Phys. 43(4), 341–344 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Landsman, N.: Bicategories of operator algebras and Poisson manifolds, Mathematical physics in mathematics and physics (Siena, 2000), vol. 30 in Fields Inst. Commun. American Mathematical Society, Providence, pp. 271–286 (2001)

  29. Libermann, P.: Problèmes d’équivalence et géométrie symplectique. Astérisque 107–108, 43–68 (1983)

    MATH  Google Scholar 

  30. Meinrenken, E.: Private communication

  31. Meinrenken, E.: Poisson Geometry from a Dirac perspective. Lett. Math. Phys. (2017). doi:10.1007/s11005-017-0977-4

  32. Park, J.-S.: Topological open \(p\)-branes, Symplectic Geometry and Mirror Symmetry (2000, Seoul). World Sci. Publ., River Edge, pp. 311–384

  33. Rieffel, M.: Morita equivalence for \(C^*\)-algebras and \(W^*\)-algebras. J. Pure Appl. Algebra 5, 51–96 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  34. Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds, Ph.D. thesis, UC Berkeley, (1999). arXiv:math/9910078

  35. Ševera, P., Weinstein, A.: Poisson geometry with a \(3\)-form background. Prog. Theor. Phys. Suppl. 144, 145–154 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stefan, P.: Accessible sets, orbits, and foliations with singularities. Proc. Lond. Math. Soc. 29, 699–713 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wade, A.: Poisson fiber bundles and coupling Dirac structures. Ann. Global Anal. Geom. 33(3), 207–217 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Weinstein, A.: The local structure of Poisson manifolds. J. Differ. Geom. 18, 523–557 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, P.: Morita equivalent symplectic groupoids, symplectic geometry, groupoids, and integrable systems (Berkeley, CA, 1989), pp. 291–311. Springer, New York (1991)

    Book  Google Scholar 

  40. Xu, P.: Morita equivalence of Poisson manifolds. Commun. Math. Phys. 142(3), 493–509 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, P.: Momentum maps and morita equivalence. J. Differ. Geom. 67(2), 289–333 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

At a late stage of this Project, we learned that E. Meinrenken was aware that the argument we present in the proof of our main theorem would work. We wish to thank him for his interest and kind encouragement, as well as many interesting discussions. We also wish the thank the referee for the detailed comments and suggestions, which greatly improved the quality of the paper. The first author was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Vrije Competitie Grant ”Flexibility and Rigidity of Geometric Structures” 612.001.101) and by IMPA (CAPES-FORTAL project) and the second author by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Veni Grant 613.009.031) and the National Science Foundation (Grant DMS 14-05671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Frejlich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frejlich, P., Mărcuț, I. On dual pairs in Dirac geometry. Math. Z. 289, 171–200 (2018). https://doi.org/10.1007/s00209-017-1947-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1947-3

Keywords

Mathematics Subject Classification

Navigation