Skip to main content
Log in

Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the following wave guide nonlinear Schrödinger equation,

$$\begin{aligned} (i\partial _t+\partial _{xx}-\vert D_y\vert )U=\vert U\vert ^2U\ \end{aligned}$$
(WS)

on the spatial cylinder \({\mathbb R}_x\times {\mathbb T}_y\). We establish a modified scattering theory between small solutions to this equation and small solutions to the cubic Szegő equation. The proof is an adaptation of the method of Hani et al. (Modified scattering for the cubic Schrödinger equation on product spaces and applications, 2015. arXiv:1311.2275v3). Combining this scattering theory with a recent result by Gérard and Grellier (On the growth of Sobolev norms for the cubic Szegő equation, 2015), we infer existence of global solutions to (WS) which are unbounded in the space \(L^2_xH^s_y({\mathbb R}\times {\mathbb T})\) for every \(s>\frac{1}{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain, J.: Problems in Hamiltonian PDE’s. Geometric and Functional Analysis (Special Volume, Part I):32–56, 2000. GAFA 2000 (Tel Aviv, 1999)

  2. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness for Schrödinger equations with derivative. SIAM J. Math. Anal. 33, 649–669 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math. 181(1), 39–113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gérard, P., Grellier, S.: On the growth of Sobolev norms for the cubic Szegő equation. Séminaire Laurent Schwartz. 2014–2015, EDP et applications, Exp. No. II, 20 p (2014). online at slsedp.cedram.org/

  5. Gérard, P., Grellier, S.: The cubic Szegő equation. Ann. Sci. Éc. Norm. Supér. (4) 43(5), 761–810 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gérard, P., Grellier, S.: Effective integrable dynamics for a certain nonlinear wave equation. Anal. PDE 5(5), 1139–1155 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gérard, P., Grellier, S.: Invariant tori for the cubic Szegő equation. Invent. Math. 187(3), 707–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gérard P., Grellier. S.: Hankel Operators and the Cubic Szegő Equation, 135 p (2015). Preprint arXiv:1508.06814

  9. Guardia, M.: Growth of Sobolev norms in the cubic nonlinear Schrödinger equation with a convolution potential. Commun. Math. Phys. 329(1), 405–434 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guardia, M., Kaloshin, V.: Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation. J. Eur. Math. Soc.: JEMS 17(1), 71–149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hani, Z.: Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 211(3), 929–964 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hani, Z., Pausader, B., Tzvetkov, N., Visciglia, N.: Modified scattering for the cubic Schrödinger equation on product spaces and applications (2015). Forum Math. Pi 3 (2015)

  13. Hani Z., Thomann, L.: Asymtotic behavior of the nonlinear Schrödinger equation with harmonic trapping. Comm. Pure Appl. Math. 69(9), 1727–1776 (2016). Preprint arXiv:1408.6213

  14. Haus, E., Procesi, M.: Growth of Sobolev norms for the quintic NLS on \({\mathbb{T}}^2\) Anal. PDE 8(4), 883–922 (2015). Preprint arXiv:1405.1538

  15. Hayashi, N., Naumkin, P., Shimomura, A., Tonegawa, S.: Modified wave operators for nonlinear Schrödinger equations in one and two dimensions. Electron. J. Differ. Equ. 62, 1–16 (2004)

    MATH  Google Scholar 

  16. Ozawa, T.: Long range scattering for nonlinear Schrödinger equations in one space dimension. Commun. Math. Phys. 139(3), 479–493 (1991)

    Article  MATH  Google Scholar 

  17. Peller, V.: Hankel operators of class \(\mathfrak{S}_p\) and their applications (rational approximation, gaussian processes, the problem of majorization of operators. Math. USSR Sb. 41, 443–479 (1982)

    Article  MATH  Google Scholar 

  18. Pocovnicu, O.: Private communications

  19. Pocovnicu, O.: Explicit formula for the solution of the Szegő equation on the real line and applications. Discrete Contin. Dyn. Syst. 31(3), 607–649 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pocovnicu, O.: First and second order approximations for a nonlinear wave equation. J. Dyn. Differ. Equ. 25(2), 305–333 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tvetkov, N., Visciglia, N.: Small data scattering for the nonlinear Schrödinger equation on product spaces. Commun. Partial Differ. Eqn. 37(1), 125–135 (2012)

    Article  MATH  Google Scholar 

  22. Xu, H.: Large-time blowup for a perturbation of the cubic Szegő equation. Anal. PDE 7(3), 717–731 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Ž. Èksper. Teoret. Fiz. 61(1), 118–134 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Xu.

Additional information

This work is part of my PhD research and it was supported by grants from Région Ile-de-France (RDMath-IdF). I would like to thank my supervisor, Prof. Patrick Gérard for his constant support and help, as well as Prof. Nikolay Tzvetkov (one of my thesis referees) for useful comments.

Appendix

Appendix

We now turn to our basic lemma allowing to transform suitable \(L^2_{x,y}\) bounds to bounds in terms of the \(L^2_{x,y}\)-based spaces S and \(S^+\). We define an LP-family \(\widetilde{Q}=\{\widetilde{Q}_A\}_A\) to be a family of operators (indexed by the dyadic integers) of the form

$$\begin{aligned} \widehat{\widetilde{Q}_1f}(\xi )=\widetilde{\varphi }(\xi )\widehat{f}(\xi ),\quad \widehat{\widetilde{Q}_Af}(\xi )=\widetilde{\phi }\left( \frac{\xi }{A}\right) \widehat{f}(\xi ), \quad A\ge 2 \end{aligned}$$

for two smooth functions \(\widetilde{\varphi },\widetilde{\phi }\in C^\infty _c(\mathbb {R})\) with \(\widetilde{\phi }\equiv 0\) in a neighborhood of 0.

We define the set of admissible transformations to be the family of operators \(\{T_A\}\) where for any dyadic number A,

$$\begin{aligned} T_A=\lambda _A\widetilde{Q}_A,\quad \vert \lambda _A\vert \le 1 \end{aligned}$$

for some LP-family \(\widetilde{Q}\).

If \(F\in \mathcal {B}\), then for any admissible transformation family \(T=\{T_A: A \text { dyadic numbers }\}\), \(\sum \nolimits _A T_AF\) converges in \(\mathcal {B}\). And this norm \(\mathcal {B}\) is called admissible if

$$\begin{aligned} \left\| \sum _A T_AF\right\| _{\mathcal {B}}\lesssim \left\| F\right\| _{\mathcal {B}}. \end{aligned}$$
(6.1)

Lemma 5.1

Recall the definitions of the norms S, \(S^+\), Z and \(\widetilde{Z}_t\),

$$\begin{aligned} \Vert F\Vert _{S}:=\,&\Vert F\Vert _{H^N_{x,y}}+\Vert xF\Vert _{L^2_{x,y}},\quad \Vert F\Vert _{S^+}:=\Vert F\Vert _S+\Vert (1-\partial _{xx})^4F\Vert _{S}+\Vert xF\Vert _{S},\\ \Vert F\Vert _{Z}:=&\sup _{\xi \in {\mathbb R}}\left[ 1+\vert \xi \vert ^2\right] \Vert \widehat{F}(\xi ,\cdot )\Vert _{B^1},\quad \Vert F\Vert _{\widetilde{Z}_t}:=\Vert F\Vert _Z+(1+\vert t\vert )^{-\delta }\Vert F\Vert _S. \end{aligned}$$

All these norms are admissible.

Proof

Due to the definition of admissible transformation, we may only deal with functions independent on y. Let us prove with the S norm for example. Indeed,

$$\begin{aligned} \Vert \sum _A T_Af\Vert _{H^N}^2&=\int \limits _{\mathbb {R}}\langle \xi \rangle ^{2N}\Big \vert \lambda _1\widetilde{\varphi }(\xi )\widehat{f}(\xi )+\lambda _A\widetilde{\phi }\left( \frac{\xi }{A}\right) \widehat{f}(\xi )\Big \vert ^2d\xi \\&\le \int \limits _{\mathbb {R}}\Big (\vert \lambda _1\vert ^2\widetilde{\varphi }(\xi )+\vert \lambda _A\vert ^2\widetilde{\phi }\left( \frac{\xi }{A}\right) \Big )\langle \xi \rangle ^{2N}\vert \widehat{f}(\xi )\vert ^2d\xi \\&\le \Vert f\Vert _{H^N}^2, \end{aligned}$$

while

$$\begin{aligned} \Vert x\sum _A T_Af\Vert _{L^2}^2&=\int \limits _{\mathbb {R}}\Big \vert \partial _\xi \big (\lambda _1\widetilde{\varphi }(\xi )\widehat{f}(\xi )+\lambda _A\widetilde{\phi }\left( \frac{\xi }{A}\right) \widehat{f}(\xi )\big )\Big \vert ^2d\xi \\&\le \int \limits _{\mathbb {R}}\Big (\vert \lambda _1\vert ^2\widetilde{\varphi }(\xi )+\vert \lambda _A\vert ^2\widetilde{\phi }\left( \frac{\xi }{A}\right) \Big )\vert \partial _\xi \widehat{f}(\xi )\vert ^2d\xi \\&\quad +\int \limits _{\mathbb {R}}\Big (\vert \lambda _1\vert ^2\widetilde{\varphi '}(\xi )+\frac{\vert \lambda _A\vert ^2}{A}\widetilde{\phi '}\left( \frac{\xi }{A}\right) \Big )\vert \widehat{f}(\xi )\vert ^2d\xi \\&\le \Vert xf\Vert _{L^2}^2+\Vert f\Vert _{L^2}^2, \end{aligned}$$

thus

$$\begin{aligned} \left\| \sum _A T_A f\right\| _S\lesssim \Vert f\Vert _S. \end{aligned}$$

\(\square \)

Given a trilinear operator \(\mathfrak {T}\) and a set \(\Lambda \) of 4-tuples of dyadic integers, we define an admissible realization of \(\mathfrak {T}\) at \(\Lambda \) to be an operator of the form which converges in \(L^2\),

$$\begin{aligned} \mathfrak {T}_\Lambda [F,G,H]=\sum _{(A,B,C,D)\in \Lambda }T_D\mathfrak {T}[T^\prime _AF,T^{\prime \prime }_BG,T^{\prime \prime \prime }_CH] \end{aligned}$$
(6.2)

for some admissible transformations T, \(T^\prime \), \(T^{\prime \prime }\), \(T^{\prime \prime \prime }\).

Lemma 5.2

Assume that a trilinear operator \(\mathfrak {T}\) satisfies

$$\begin{aligned} \begin{aligned} Z\mathfrak {T}[F,G,H]= \mathfrak {T}[ZF,G,H]+\mathfrak {T}[F,ZG,H]+\mathfrak {T}[F,G,ZH], \end{aligned} \end{aligned}$$
(6.3)

for \(Z\in \{x,\partial _x,\partial _{y}\}\) and let \(\Lambda \) be a set of 4-tuples of dyadic integers. With the notation introduced above, assume also that for all admissible realizations of \(\mathfrak {T}\) at \(\Lambda \),

$$\begin{aligned} \Vert \mathfrak {T}_\Lambda [F^a,F^b,F^c]\Vert _{L^2}\le K\min _{\{\alpha ,\beta ,\gamma \}=\{a,b,c\}}\Vert F^\alpha \Vert _{L^2}\Vert F^\beta \Vert _{\mathcal {B}}\Vert F^\gamma \Vert _{\mathcal {B}} \end{aligned}$$
(6.4)

for some admissible norm \(\mathcal {B}\) such that the Littlewood–Paley projectors \(P_{\le M}\) (both in x and in y) are uniformly bounded on \(\mathcal {B}\). Then, for all admissible realizations of \(\mathfrak {T}\) at \(\Lambda \),

$$\begin{aligned} \Vert \mathfrak {T}_\Lambda [F^a,F^b,F^c]\Vert _{S}\lesssim K\max _{\{\alpha ,\beta ,\gamma \}=\{a,b,c\}}\Vert F^\alpha \Vert _{S}\Vert F^\beta \Vert _{\mathcal {B}}\Vert F^\gamma \Vert _{\mathcal {B}}. \end{aligned}$$
(6.5)

Assume in addition that, for \(Y\in \{x,(1-\partial _{xx})^4\}\),

$$\begin{aligned} \Vert YF\Vert _{\mathcal {B}}\lesssim \theta _1\Vert F\Vert _{S^+}+\theta _2\Vert F\Vert _S, \end{aligned}$$
(6.6)

then for all admissible realizations of \(\mathfrak {T}\) at \(\Lambda \),

$$\begin{aligned} \Vert \mathfrak {T}_\Lambda [F^a,F^b,F^c]\Vert _{S^+}\lesssim & {} K\max _{\{\alpha ,\beta ,\gamma \}=\{a,b,c\}}\Vert F^\alpha \Vert _{S^+}\big (\Vert F^\beta \Vert _{\mathcal {B}}+\theta _1\Vert F^\beta \Vert _{S}\big ) \Vert F^\gamma \Vert _{\mathcal {B}}\nonumber \\&+\theta _2K\max _{\{\alpha ,\beta ,\gamma \}=\{a,b,c\}}\Vert F^\alpha \Vert _{S}\Vert F^\beta \Vert _{S}\Vert F^\gamma \Vert _{\mathcal {B}}. \end{aligned}$$
(6.7)

Proof

Let us start with (6.5).

1. The weighted component of S norm. By rewriting \(xT_A=[x,T_A]+T_Ax\) and using (6.3), we have

$$\begin{aligned} x\mathfrak {T}_\Lambda [F^a,F^b,F^c]= & {} \sum _{(A,B,C,D)\in \Lambda }xT_D\mathfrak {T}[T^\prime _AF^a,T^{\prime \prime }_BF^b,T^{\prime \prime \prime }_CF^c]\nonumber \\= & {} \sum _{(A,B,C,D)\in \Lambda }[x,T_D]\mathfrak {T}[T^\prime _AF^a,T^{\prime \prime }_BF^b,T^{\prime \prime \prime }_CF^c]\nonumber \\&\quad +\sum _{(A,B,C,D)\in \Lambda }T_D\mathfrak {T}[[x,T^\prime _A]F^a,T^{\prime \prime }_BF^b,T^{\prime \prime \prime }_CF^c]\nonumber \\&\quad +\sum _{(A,B,C,D)\in \Lambda }T_D\mathfrak {T}[T^\prime _AF^a,[x,T^{\prime \prime }_B]F^b,T^{\prime \prime \prime }_CF^c]\nonumber \\&\quad +\sum _{(A,B,C,D)\in \Lambda }T_D\mathfrak {T}[T^\prime _AF^a,T^{\prime \prime }_BF^b,[x,T^{\prime \prime \prime }_C]F^c]\nonumber \\&\quad +\mathfrak {T}_\Lambda [xF^a,F^b,F^c]+\mathfrak {T}_\Lambda [F^a,xF^b,F^c]+\mathfrak {T}_\Lambda [F^a,F^b,xF^c].\nonumber \\ \end{aligned}$$
(6.8)

By simple calculation, we have

$$\begin{aligned} \mathrm{[x,Q_A]}=A^{-1}Q'_A. \end{aligned}$$

We notice that if \(Q_A\) is an LP-family, \(Q'_A\) is also an LP-family, then \([x,T_A]\) is also an admissible transformation. Thus, we may consider \(x\mathfrak {T}_\Lambda [F^a,F^b,F^c]\) as the following summation

$$\begin{aligned} \mathfrak {T}_\Lambda [F^a,F^b,F^c]+\mathfrak {T}_\Lambda [xF^a,F^b,F^c]+\mathfrak {T}_\Lambda [F^a,xF^b,F^c]+\mathfrak {T}_\Lambda [F^a,F^b,xF^c], \end{aligned}$$
(6.9)

then \(\Vert x\mathfrak {T}_\Lambda [F^a,F^b,F^c]\Vert _{L^2}\) follows from (6.4).

2. The \(H^N\) component of S norm. We will use the equivalent definition of \(H^N\) norm,

$$\begin{aligned} \Vert F\Vert _{H^N}^2:=\sum _{M \text { dyadic}}M^{2N}\Vert P_M F\Vert _{L^2}^2, \end{aligned}$$

with \(P_M\) as the Littlewood–Paley projections on \(\mathbb {R}\times \mathbb {T}\) defined in Sect. 2. Then, we may decompose

$$\begin{aligned} P_M\mathfrak {T}_\Lambda [F^a,F^b,F^c]=P_M\mathfrak {T}_{\Lambda ,low}[F^a,F^b,F^c]+P_M\mathfrak {T}_{\Lambda ,high}[F^a,F^b,F^c], \end{aligned}$$

with\(\mathfrak {T}_{\Lambda ,low}[F^a,F^b,F^c]=\mathfrak {T}_\Lambda [P_{\le M}F^a,P_{\le M}F^b,P_{\le M}F^c]\).

We have firstly

$$\begin{aligned} \sum _{M \text { dyadic}}M^{2N}\Vert P_M\mathfrak {T}_{\Lambda ,high}[F^a,F^b,F^c]\Vert _{L^2}^2\lesssim K^2\max _{\{\alpha ,\beta ,\gamma \}=\{a,b,c\}}\Vert F^\alpha \Vert _{H^N}^2 \Vert F^\beta \Vert _{\mathcal {B}}^2\Vert F^\gamma \Vert _{\mathcal {B}}^2, \end{aligned}$$
(6.10)

since

$$\begin{aligned} \begin{aligned}&\sum _M\vert M \vert ^{2N}\Vert P_M\mathfrak {T}_\Lambda [P_{\ge 2M}F^a,F^b,F^c]\Vert _{L^2}^2\le K^2\sum _M \vert M\vert ^{2N} \Vert P_{\ge 2M}F^a\Vert _{L^2}^2\Vert F^b\Vert _{\mathcal {B}}^2\Vert F^c\Vert _{\mathcal {B}}^2\\&\quad \lesssim K^2\Vert F^a\Vert _{H^N}^2 \Vert F^b\Vert _{\mathcal {B}}^2\Vert F^c\Vert _{\mathcal {B}}^2. \end{aligned} \end{aligned}$$
(6.11)

Let \(Z\in \{\partial _x,\partial _y\}\), we can bound the contribution of \(\mathfrak {T}_{\Lambda ,low}\) as below

$$\begin{aligned} \begin{aligned}&M^{N}\Vert P_M\mathfrak {T}_{\Lambda ,low}\Vert _{L^2}\\&\quad \lesssim M^{-N}\Vert Z^{2N}P_M\mathfrak {T}_{\Lambda ,low}[P_{\le M}F^a,P_{\le M}F^b,P_{\le M}F^c]\Vert _{L^2}\\&\quad =M^{-N}\left\| \sum _{\alpha +\beta +\gamma \le 2N}\sum _{M_1,M_2,M_3\le M}P_M\mathfrak {T}_{\Lambda ,low}[Z^{\alpha }P_{ M_1}F^a,Z^{\beta }P_{M_2}F^b,Z^{\gamma }P_{M_3}F^c]\right\| _{L^2}. \end{aligned} \end{aligned}$$
(6.12)

Without loss of generality, we assume \(M_1=\max {(M_1,M_2,M_3)}\le M\), then

$$\begin{aligned} \begin{aligned} M^{N}\Vert P_M\mathfrak {T}_{\Lambda ,low}\Vert _{L^2}&\lesssim \sum _{M_1\le M}M^{-N}M_1^{2N}\sum _{M_2,M_3\le M_1}\Vert \mathfrak {T}_{\Lambda ,low}[P_{ M_1}F^a,P_{M_2}F^b,P_{M_3}F^c]\Vert _{L^2}\\&\lesssim K \sum _{M_1\le M}\left( \frac{M_1}{M}\right) ^{-N}M_1^{N}\Vert P_{ M_1}F^a\Vert _{L^2}\Vert F^b\Vert _{\mathcal {B}}\Vert F^c\Vert _{\mathcal {B}}, \end{aligned} \end{aligned}$$
(6.13)

the above sum is in \(\ell _M^2\) by Schur test, then

$$\begin{aligned} \sum _{M \text { dyadic}}M^{2N}\Vert P_M\mathfrak {T}_{\Lambda ,low}[F^a,F^b,F^c]\Vert _{L^2}^2\lesssim K^2\max _{\{\alpha ,\beta ,\gamma \}=\{a,b,c\}}\Vert F^\alpha \Vert _{H^N}^2 \Vert F^\beta \Vert _{\mathcal {B}}^2\Vert F^\gamma \Vert _{\mathcal {B}}^2. \end{aligned}$$
(6.14)

Therefore we bound the \(H^N\) component of S norm, which completes the estimate (6.5).

Now, we turn to prove the estimate (6.7), due to the definition of \(S^+\) norm, we only need to bound \(\Vert x\mathfrak {T}_{\Lambda }\Vert _{S}\) and \(\Vert (1-\partial _{xx})^4\mathfrak {T}_{\Lambda }\Vert _S\). From (6.9) and (6.5), we gain directly

$$\begin{aligned} \begin{aligned}&\Vert x\mathfrak {T}_{\Lambda }[F^a,F^b,F^c]\Vert _{S}\\&\quad \lesssim \max _{\{\alpha ,\beta ,\gamma \}=\{a,b,c\}}\Vert F^{\alpha }\Vert _{S^+}\Vert F^\beta \Vert _{\mathcal {B}}\Vert F^\gamma \Vert _{\mathcal {B}}+\max _{\{\alpha ,\beta ,\gamma \}=\{a,b,c\}}\Vert F^{\alpha }\Vert _{S}\Vert xF^\beta \Vert _{\mathcal {B}}\Vert F^\gamma \Vert _{\mathcal {B}}, \end{aligned}\end{aligned}$$
(6.15)

we then using (6.6) to control the norm \(\Vert xF\Vert _{\mathcal {B}}\). The estimate on \(\Vert (1-\partial _{xx})^4\mathfrak {T}_{\Lambda }\Vert _S\) can be calculated similarly by replacing x with \((1-\partial _{xx})^4\). The proof is completed. \(\square \)

Remark 5.2

We have a Leibniz rule for \(\mathcal {I}^t[f,g,h]\) and \(\mathcal {N}^t[F,G,H]\), namely

$$\begin{aligned} \begin{aligned}&Z\mathcal {I}^t[f,g,h]=\mathcal {I}^t[Zf,g,h]+\mathcal {I}^t[f,Zg,h]+\mathcal {I}^t[f,g,Zh],\quad Z\in \{x,\partial _x\},\\&Z\mathcal {N}^t[F,G,H]=\mathcal {N}^t[ZF,G,H]+\mathcal {N}^t[F,ZG,H]+\mathcal {N}^t[F,G,ZH],\quad Z\in \{x,\partial _x,\partial _y\}. \end{aligned} \end{aligned}$$
(6.16)

Property (6.16) is of importance in order to ensure the hypothesis of the transfer principle displayed by Lemma 5.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H. Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation. Math. Z. 286, 443–489 (2017). https://doi.org/10.1007/s00209-016-1768-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1768-9

Keywords

Mathematics Subject Classification

Navigation