Skip to main content
Log in

Invariant tori for the cubic Szegö equation

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We continue the study of the following Hamiltonian equation on the Hardy space of the circle,

$$i\partial_tu=\Pi(|u|^2u),$$

where Π denotes the Szegö projector. This equation can be seen as a toy model for totally non dispersive evolution equations. In a previous work, we proved that this equation admits a Lax pair, and that it is completely integrable. In this paper, we construct the action-angle variables, which reduces the explicit resolution of the equation to a diagonalisation problem. As a consequence, we solve an inverse spectral problem for Hankel operators. Moreover, we establish the stability of the corresponding invariant tori. Furthermore, from the explicit formulae, we deduce the classification of orbitally stable and unstable traveling waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    MATH  Google Scholar 

  2. Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Nonlinear equations of Korteweg-de Vries type, finite-band linear operators and Abelian varieties. Russ. Math. Surv. 31, 59–146 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Flaschka, H., Mc Laughlin, D.: Canonically conjugate variables for the Korteweg-de Vries equation and Toda lattices with periodic boundary conditions, Progress. Theor. Phys. 55, 438–456 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gérard, P., Grellier, S.: The cubic Szegö equation. Ann. Sci. Ecole Norm. Super. 43, 761–810 (2010)

    MATH  Google Scholar 

  5. Grébert, B., Kappeler, T., Pöschel, J.: Normal form theory for the NLS equation, Preprint March 2009, available on arXiv:0907.3938 [math.AP]

  6. Its, A., Matveev, V.B.: Hill operators with a finite number of lacunae. Funkc. Anal. Prilozh. 9, 69–70 (1975). (Russian)

    Article  MathSciNet  Google Scholar 

  7. Kappeler, T., Pöschel, J.: KdV & KAM, A Series of Modern Surveys in Mathematics, vol. 45. Springer, Berlin (2003)

    Google Scholar 

  8. Kronecker, L.: Zur Theorie der Elimination einer Variablen aus zwei algebraische Gleischungen, Montasber. Königl. Preussischen Akad. Wies. (Berlin), 535–600 (1881). Reprinted in Mathematische Werke, 2, 113–192 (1968)

  9. Kuksin, S.B., Perelman, G.: Vey theorem in infinite dimension and its application to KDV. Discrete Contin. Dyn. Syst. 27, 1–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lax, P.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lax, P.: Periodic solutions of the KdV equation. Commun. Pure Appl. Math. 28, 141–188 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Megretskii, A.V., Peller, V.V., Treil, S.R.: The inverse problem for self-adjoint Hankel operators. Acta Math. 174, 241–309 (1995)

    Article  MathSciNet  Google Scholar 

  13. Mc Kean, H.P., van Moerbecke, P.: The spectrum of Hill’s equation. Invent. Math. 30, 217–274 (1975)

    Article  MathSciNet  Google Scholar 

  14. Mc Kean, H.P., Trubowitz, E.: Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points. Commun. Pure Appl. Math. 29, 143–226 (1976)

    Article  MathSciNet  Google Scholar 

  15. Mc Kean, H.P., Vaninsky, K.L.: Action-angle variables for the cubic Schrödinger equation. Commun. Pure Appl. Math. 50, 489–562 (1997)

    Article  MathSciNet  Google Scholar 

  16. Mc Kean, H.P., Vaninsky, K.L.: Cubic Schrödinger: the petit canonical ensemble in action-angle variables. Commun. Pure Appl. Math. 50, 593–622 (1997)

    Article  MathSciNet  Google Scholar 

  17. Nikolskii, N.K.: Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz. Mathematical Surveys and Monographs, vol. 92. American Mathematical Society, Providence (2002). Translated from the French by Andreas Hartmann

    Google Scholar 

  18. Nikolskii, N.K.: Treatise on the shift operator. Fundamental Principles of Mathematical Sciences, vol. 273. Springer, Berlin (1986). Spectral function theory. With an Appendix by S.V. Khrushchëv and V.V. Peller. Translated from the Russian by Jaak Peetre. Grundlehren der Mathematischen Wissenschaften

    Book  Google Scholar 

  19. Novikov, S.P.: The periodic problem for the Korteweg-de Vries equation. Funkc. Anal. Prilozh. 8, 54–66 (1974)

    Article  Google Scholar 

  20. Peller, V.V.: Hankel operators and their applications. Springer Monographs in Mathematics. Springer, New York (2003)

    Google Scholar 

  21. Treil, S.R.: Moduli of Hankel operators and a problem of Peller-Khrushchëv (Russian). Dokl. Akad. Nauk SSSR 283(5), 1095–1099 (1985). English transl. in Soviet Math. Dokl. 32, 293–297 (1985)

    MathSciNet  Google Scholar 

  22. Treil, S.R.: Moduli of Hankel operators and the V.V. Peller–S.Kh. Khrushchëv problem. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 141, 39–55 (1985) (Russian) Investigations on linear operators and the theory of functions, XIV

    MathSciNet  MATH  Google Scholar 

  23. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62–69 (1972)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Grellier.

Additional information

P. Gérard is member of the Institut Universitaire de France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gérard, P., Grellier, S. Invariant tori for the cubic Szegö equation. Invent. math. 187, 707–754 (2012). https://doi.org/10.1007/s00222-011-0342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-011-0342-7

Mathematics Subject Classification (2000)2010

Navigation