Skip to main content
Log in

Realizing rotation numbers on annular continua

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

An annular continuum is a compact connected set K which separates a closed annulus A into exactly two connected components, one containing each boundary component. The topology of such continua can be very intricate (for instance, non-locally connected). We adapt a result proved by Handel in the case where \(K=A\), showing that if K is an invariant annular continuum of a homeomorphism of A isotopic to the identity, then the rotation set in K is closed. Moreover, every element of the rotation set is realized by an ergodic measure supported in K (and by a periodic orbit if the rotation number is rational) and most elements are realized by a compact invariant set. Our second result shows that if the continuum K is minimal with the property of being annular (what we call a circloid), then every rational number between the extrema of the rotation set in K is realized by a periodic orbit in K. As a consequence, the rotation set is a closed interval, and every number in this interval (rational or not) is realized by an orbit (moreover, by an ergodic measure) in K. This improves a previous result of Barge and Gillette.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The author is grateful to T. Jäger for pointing this out.

References

  1. Barge, M., Gillette, R.M.: Rotation and periodicity in plane separating continua. Ergod. Theory Dyn. Syst. 11(4), 619–631 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barge, M., Gillette, R.M.: A fixed point theorem for plane separating continua. Topol. Appl. 43(3), 203–212 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bestvina, M., Handel, M.: Train-tracks for surface homeomorphisms. Topology 34(1), 109–140 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bing, R.H.: Concerning hereditarily indecomposable continua. Pac. J. Math. 1, 43–51 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barge, M., Kuperberg, K.: Periodic points from periodic prime ends. In: Proceedings of the 1998 Topology and Dynamics Conference, vol. 23, pp. 13-21. Fairfax, VA (1998)

  6. Barge, M., Matison, T.: A Poincaré–Birkhoff theorem on invariant plane continua. Ergod. Theory Dyn. Syst. 18(1), 41–52 (1998)

    Article  MATH  Google Scholar 

  7. Bamón, R., Malta, I., Pacífico, M.J.: Changing rotation intervals of endomorphisms of the circle. Invent. Math. 83(2), 257–264 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boroński, J.P., Oprocha, P.: Rotational chaos and strange attractors on the 2-torus. Math. Z. 279(3–4), 689–702 (2015). (English)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barge, M., Swanson, R.: Rotation shadowing properties of circle and annulus maps. Ergod. Theory Dyn. Syst. 8(4), 509–521 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Franks, J., Le Calvez, P.: Regions of instability for non-twist maps. Ergod. Theory Dyn. Syst. 23(1), 111–141 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fathi, A., Laudenbach, F., Poénaru, V.: Thurston’s Work on Surfaces, Mathematical Notes, vol. 48. Princeton University Press, Princeton, NJ (2012). Translated from the 1979 French original by Djun M. Kim and Dan Margalit

  12. Franks, J.: Generalizations of the Poincaré–Birkhoff theorem. Ann. Math. (2) 128(1), 139–151 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franks, J.: Recurrence and fixed points of surface homeomorphisms. Ergod. Theory Dyn. Syst. 8*(Charles Conley Memorial Issue), 99–107 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Franks, J.: Realizing rotation vectors for torus homeomorphisms. Trans. Am. Math. Soc. 311(1), 107–115 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Franks, J.: Rotation vectors for surface diffeomorphisms. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Zürich, 1994), pp. 1179-1186. Birkhäuser, Basel (1995)

  16. Guelman, N., Koropecki, A., Tal, F.A.: A characterization of annularity for area-preserving toral homeomorphisms. Math. Z. 276(3–4), 673–689 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Handel, M.: A pathological area preserving \(C^{\infty }\) diffeomorphism of the plane. Proc. Am. Math. Soc. 86(1), 163–168 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Handel, M.: Global shadowing of pseudo-Anosov homeomorphisms. Ergod. Theory Dyn. Syst. 5(3), 373–377 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Handel, M.: The rotation set of a homeomorphism of the annulus is closed. Commun. Math. Phys. 127(2), 339–349 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hernández-Corbato, L.: An elementary proof of a theorem by Matsumoto, preprint

  21. Herman, M.-R.: Construction of some curious diffeomorphisms of the Riemann sphere. J. Lond. Math. Soc. (2) 34(2), 375–384 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ito, R.: Rotation sets are closed. Math. Proc. Cambridge Philos. Soc. 89(1), 107–111 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jäger, T.: Linearization of conservative toral homeomorphisms. Invent. Math. 176(3), 601–616 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jäger, T.: Periodic point free homeomorphisms of the open annulus: from skew products to non-fibred maps. Proc. Am. Math. Soc. 138(5), 1751–1764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jäger, T., Koropecki, A.: Poincaré theory for decomposable cofrontiers, preprint: arXiv:1506.01096 (2015)

  26. Jäger, T., Passeggi, A.: On torus homeomorphisms semiconjugate to irrational rotations. Ergod. Theory Dyn. Syst. 36(7), 2114–2137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Koropecki, A., Le Calvez, P., Nassiri, M.: Prime ends rotation numbers and periodic points. Duke Math. J. 164(3), 403–472 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koropecki, A., Nassiri, M.: Transitivity of generic semigroups of area-preserving surface diffeomorphisms. Math. Z. 266(3), 707–718 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kennedy, J.A., Yorke, J.A.: Bizarre topology is natural in dynamical systems. Bull. Am. Math. Soc. (N.S.) 32(3), 309–316 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Le Calvez, P.: Propriétés des attracteurs de Birkhoff. Ergod. Theory Dyn. Syst. 8(2), 241–310 (1988)

    Article  MATH  Google Scholar 

  31. Le Calvez, P.: Ensembles invariants non enlacés des difféomorphismes du tore et de l’anneau. Invent. Math. 155(3), 561–603 (2004)

    Article  MathSciNet  Google Scholar 

  32. Llibre, J., MacKay, R.S.: Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity. Ergod. Theory Dyn. Syst. 11(1), 115–128 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mather, J.N.: Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology 21(4), 457–467 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mather, J.N.: Topological proofs of some purely topological consequences of Carathéodory’s theory of prime ends. In: Selected Studies: Physics-Astrophysics, Mathematics, History of Science, pp. 225-255. North-Holland, Amsterdam (1982)

  35. Matsumoto, S.: Prime end rotation numbers of invariant separating continua of annular homeomorphisms. Proc. Am. Math. Soc. 140(3), 839–845 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Misiurewicz, M., Ziemian, K.: Rotation sets for maps of tori. J. Lond. Math. Soc. (2) 40(3), 490–506 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. Newman, M.: Elements of the Topology of Plane Sets of Points, Dover Books on Advanced Mathematics. Dover Publications, New York (1992)

    Google Scholar 

  38. Newhouse, S., Palis, J., Takens, F.: Bifurcations and stability of families of diffeomorphisms. Inst. Hautes Études Sci. Publ. Math. 57, 5–71 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pollicott, M.: Rotation sets for homeomorphisms and homology. Trans. Am. Math. Soc. 331(2), 881–894 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Passeggi, A., Potrie, R., Sambarino, M.: Rotation intervals and entropy on attracting annular continua, preprint: arXiv:1511.04434 (2015)

  41. Thurston, W.P.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc. (N.S.) 19(2), 417–431 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Walker, R.B.: Periodicity and decomposability of basin boundaries with irrational maps on prime ends. Trans. Am. Math. Soc. 324(1), 303–317 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank A. Passeggi and T. Jäger for the discussions that motivated this paper and for their suggestions, and M. Handel for his availability to answer my questions and for the helpful comments. I also thank the anonymous referee for pointing out a mistake in the statement of Theorem A and for other corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Koropecki.

Additional information

The author was supported by research grants from CNPq-Brasil and FAPERJ-Brasil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koropecki, A. Realizing rotation numbers on annular continua. Math. Z. 285, 549–564 (2017). https://doi.org/10.1007/s00209-016-1720-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1720-z

Keywords

Navigation