Skip to main content
Log in

Hochschild Lefschetz class for \(\mathcal{D }\)-modules

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce a notion of Hochschild Lefschetz class for a good coherent \(\mathcal{D }\)-module on a compact complex manifold, and prove that this class is compatible with the direct image functor. We prove an orbifold Riemann–Roch formula for a \(\mathcal{D }\)-module on a compact complex orbifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is actually a slight abuse of terminology. In fact, \(\mathcal{H }\mathcal{H }(\widehat{\mathcal{E }}_X, \widehat{\mathcal{E }}_X)\) is an object in the derived category of sheaves of \(\mathbb{C }\)-vector spaces on \(X\).

  2. See Eq. (1) for the definition of \(\mathcal{H }\mathcal{H }(\widehat{\mathcal{E }}_X, \widehat{\mathcal{E }}_X^\gamma )\).

  3. This is a minor abuse of terminology.

  4. \(X^\gamma \) is a disjoint union of embedded submanifolds possibly of different dimensions.

  5. As did in [9].

  6. By a \(\gamma \)-equivariant element in \(D_{\text{ coh}}^{b}(X)\), we mean an element \(\mathcal{K }\) in \(D_{\text{ coh}}^{b}(X)\) together with a morphism from \(\mathcal{K }\) to \(\gamma _{*}\mathcal{K }\), which is denoted by \(\hat{\gamma }\).

  7. \(\gamma _{X_{1}}\) (resp., \(\gamma _{X_{2}}\)) denotes the holomorphic diffeomorphism \(\gamma \) acting on \(X\) (resp., \(X_2\)).

  8. As in Sect. 2, we abuse terminology here: \(\mathcal{H }\mathcal{C }^-(\mathcal{A })\) and \(\mathcal{H }\mathcal{H }(\mathcal{A })\) are objects in the derived category of sheaves of \(\mathbb{C }\)-vector spaces on \(Q\). Also, when \(Q=X:=T^{*}M\) as in Sect. 2 and when \(\mathcal{A }=\widehat{\mathcal{E }}_X, \,\mathcal{H }\mathcal{H }(\mathcal{A })\) as defined in [1] is isomorphic to \(\mathcal{H }\mathcal{H }(\mathcal{A })\) as defined in Sect. 2.

References

  1. Bressler, P., Nest, R., Tsygan, B.: Riemann–Roch theorems via deformation quantization, I, II. Adv. Math. 167(1), 1–25, 26–73 (2002)

    Google Scholar 

  2. Dolgushev, V., Etingof, P.: Hochschild cohomology of quantized symplectic orbifolds and the Chen–Ruan cohomology. Int. Math. Res. Notices 27, 1657–1688 (2005)

    Article  MathSciNet  Google Scholar 

  3. Engeli, M., Felder, G.: A Riemann–Roch–Hirzebruch formula for traces of differential operators. Ann. Sci. Éc. Norm. Supér. (4) 41(4), 621–653 (2008)

    MathSciNet  Google Scholar 

  4. Fedosov, B.V.: On \(G\)-trace and \(G\)-index in deformation quantization. Lett. Math. Phys. 52, 29–49 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feigin, B., Felder, G., Shoikhet, B.: Hochschild cohomology of the Weyl algebra and traces in deformation quantization. Duke Math. J. 127(3), 487–517 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Felder, G., Tang, X.: Equivariant Lefschetz number of differential operators. Math. Z. 266(2), 451–470 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guillermou, S.: Lefschetz class of elliptic pairs. Duke Math. J. 85(2), 273–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kashiwara, M.: D-modules and Microlocal Calculus. Translations of Mathematical Monographs, vol. 217. American Mathematical Society, New York (2003)

  9. Kashiwara, M., Schapira, P.: Deformation quantization modules. Astésrique, arXiv:1003.3304. (to appear, 2012)

  10. Neumaier, N., Pflaum, M., Posthuma, H., Tang, X.: Homology of formal deformations of proper étale groupoids. J. Reine Angew. Math. 593, 117–168 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Pflaum, M., Posthuma, H., Tang, X.: An algebraic index theorem for orbifolds. Adv. Math. 210(1), 83–121 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pflaum, M., Posthuma, H., Tang, X.: Cyclic cocycles in deformation quantization and higher index theorems. Adv. Math. 223(6), 1958–2021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Polesello, P., Schapira, P.: Stacks of quantization-deformation modules over complex symplectic manifolds. Int. Math. Res. Notices 49, 2637–2664 (2004)

    Article  MathSciNet  Google Scholar 

  14. Ramadoss, A.: Some notes on the Feigin–Losev–Shoikhet integral conjecture. J. Noncommut. Geom. 2, 405–448 (2008)

    Google Scholar 

  15. Schapira, P., Schneider, J.: Elliptic pairs. I. Relative finiteness and duality. Index theorem for elliptic pairs. Astérisque 224, 5–60 (1994)

    Google Scholar 

  16. Schapira, P., Schneiders, J.: Elliptic pairs. II. Euler class and relative index theorem. Index theorem for elliptic pairs. Astérisque 224, 61–98 (1994)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Pierre Schapira and Giovanni Felder for interesting discussions. A.R. is supported by the Swiss National Science Foundation for the project “Topological quantum mechanics and index theorems” (Ambizione Beitrag Nr. PZ00P2_127427/1). X.T. is partially supported by NSF Grant DMS-0900985.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramadoss, A., Tang, X. & Tseng, HH. Hochschild Lefschetz class for \(\mathcal{D }\)-modules. Math. Z. 275, 367–388 (2013). https://doi.org/10.1007/s00209-012-1139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1139-0

Keywords

Navigation