Skip to main content
Log in

A Global version of Grozman’s theorem

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(X\) be a manifold. The classification of all equivariant bilinear maps between tensor density modules over \(X\) has been investigated by Grozman (Funct Anal Appl 14(2):58–59, 1980), who has provided a full classification for those which are differential operators. Here we investigate the same question without the hypothesis that the maps are differential operators. In our paper, the geometric context is algebraic geometry and the manifold \(X\) is the circle \(\text{ Spec}\, \mathbb{C }[z,z^{-1}]\). Our main motivation comes from the fact that such a classification is required to complete the proof of the main result of Iohara and Mathieu (Proc Lond Math Soc, 2012, in press). Indeed it requires to also include the case of deformations of tensor density modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyallian, C., Kac, V., Liberati, J., Rudakov, A.: Representations of simple finite Lie conformal superalgebras of type \(W\) and \(S\). J. Math. Phys. 47, 043513 (2006)

    Article  MathSciNet  Google Scholar 

  2. Feigin, B., Fuchs, D.: Invariant differential operators on the line. Funct. Anal. Appl. 13(4), 91–92 (1979)

    MATH  Google Scholar 

  3. Feigin, B., Fuchs, D.: Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra. Funct. Anal. Appl. 16(2), 47–63 (1982)

    Article  Google Scholar 

  4. Grozman, P.Ya.: Classification of bilinear invariants of operators on tensor fields. Funct. Anal. Appl. 14(2), 58–59 (1980)

    Google Scholar 

  5. Grozman, P.Ya.: Invariant bilinear differential operators. Preprint (2005). arXiv:math/0509562v1

  6. Grozman, P., Leites, D., Schepochkina, I.: Invariant Operators on Supermanifolds and Standard Models. Multiple Facets of Quantization and Supersymmetry, pp. 508–555. World Sci. Publ., River Edge NJ (2002)

  7. Iohara, K., Mathieu, O.: Classification of simple Lie algebras on a lattice. Proc. Lond. Math. Soc. (in press, doi:10.1112/plms/pds042)

  8. Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, London (1990)

    Book  MATH  Google Scholar 

  9. Kaplansky, I.: The Virasoro algebra. Commun. Math. Phys. 86, 49–54 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kac, V.G., Raina, A.K.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras. Advanced Series in Mathematical Physics, vol. 2. World Sci, Teaneck NJ (1987)

  11. Kaplansky, I., Santharoubane, L.J.: Harish–Chandra modules over the Virasoro algebra. In: Infinite-Dimensional Groups with Applications. Mathematical Sciences Research Institute Publications, vol. 4, pp. 217–231. Springer, New York Belin (1985)

  12. Kirillov, A.A.: Invariant operators over geometric quantities. J. Math. Sci. 18, 1–21 (1982)

    Article  MATH  Google Scholar 

  13. Kostrikin, I.A.: Irreducible graded representations of Lie algebras of Cartan type. Dokl. Akad. Nauk SSSR 243, 565–567 (1978)

    MathSciNet  Google Scholar 

  14. Kravchenko, O.S., Khesin, B.A.: Central extension of the algebra of pseudodifferential symbols. Funct. Anal. Appl. 25(2), 152–154 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mathieu, O.: Classification of Harish–Chandra modules over the Virasoro Lie algebra. Invent. Math. 107, 225–234 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mathieu, O.: Classification of irreducible weight modules. Ann. Inst. Fourier 50, 537–592 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martin, C., Piard, A.: Classification of the indecomposable bounded admissible modules over the Virasoro Lie algebra with weightspaces of dimension not exceeding two. Commun. Math. Phys. 150, 465–493 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ovsienko, V., Tabachinikov, S.: Projective Differential Geometry Old and New. From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Cambridge Tracts in Mathematics, vol. 165. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  19. Peetre, J.: Une caractérisation abstraite des opérateurs différentiels. Math. Scand. 7, 211–218 (1959)

    MathSciNet  MATH  Google Scholar 

  20. Rudakov, A.N.: Irreducible representations of infinite-dimensional Lie algebras of Cartan type. Izv. Akad. Nauk SSSR Ser. Mat. 38, 835–866 (1974)

    MathSciNet  Google Scholar 

  21. Veblen, O.: Differential invariants and geometry. In: Atti del Congresso Internazionale dei Mathematici, Bologna (1928)

Download references

Acknowledgments

We would like to thank our colleague Jérôme Germoni for his computation of the determinant \(\det M\) with the aid of MAPLE. We also would like to thank the referee for several remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Iohara.

Appendix: Complete expression for \(\mathbf{D}_{\delta _1,\delta _2,\gamma }(x,y)\)

Appendix: Complete expression for \(\mathbf{D}_{\delta _1,\delta _2,\gamma }(x,y)\)

Recall that \(\mathbf{D}_{\delta _1,\delta _2,\gamma }=\det \mathbf{M}\), where \(\mathbf{M}\) is a \(6\times 6\) matrix whose entries are polynomials of degree \(2\) in \(x,y,\delta _1,\delta _2\) and \(\gamma \). The Appendix provides the explicit formula for \(\mathbf{D}\).

It is quite obvious that \(\mathbf{D}_{\delta _1,\delta _2,\gamma }(x,y)=\mathbf{D}_{\delta _1,\delta _2,\gamma }(-x-7,-y+7)\). Thus, in order to provide more compact formulas, it is better to list the polynomials \(\tilde{q}_{i,j}\) defined by

$$\begin{aligned} \mathbf{D}_{\delta _1,\delta _2,\gamma }(x-7/2,y+7/2)=C(\delta _1,\delta _2,\gamma ) \sum \nolimits _{i,j}\tilde{q}_{i,j}(\delta _1,\delta _2,\gamma ) x^iy^j. \end{aligned}$$

The polynomials \(\tilde{q}_{i,j}\) are calculated with MAPLE. It turns out that the only non-zero polynomials are \(\tilde{q}_{0,0}, \tilde{q}_{0,2},\tilde{q}_{1,1},\tilde{q}_{2,0}, \tilde{q}_{1,3},\tilde{q}_{2,2}\) and \(\tilde{q}_{3,1}\). It follows that \(\mathbf{D}_{\delta _1,\delta _2,\gamma }\) is a polynomial of degree 4 in \(x\) and \(y\) and therefore \(\tilde{q}_{1,3}=q_{1,3},\,\tilde{q}_{3,1}=q_{3,1}\) and \(\tilde{q}_{2,2}=q_{2,2}\), where the polynomials \(q_{1,3}, q_{3,1}\) and \(q_{2,2}\) are given in Sect. 8.3. The other non-zero polynomials \(\tilde{q}_{i,j}\) are given by the following formulas:

$$\begin{aligned} 16\tilde{q}_{0,0}&= [(4\delta _1+1)(4\delta _2+1)\gamma (1-\gamma )+16(\delta _1^2+\delta _2^2-\delta _1\delta _2)\delta _1\delta _2 \\&\quad +\,4(\delta _1^2+\delta _2^2-3\delta _1\delta _2(\delta _1+\delta _2)) +(13(\delta _1^2+\delta _2^2)-50\delta _1\delta _2)+11(\delta _1+\delta _2)+2] \\&\quad \times [(4\delta _1+1)(4\delta _2+1)\gamma (1-\gamma )++16(\delta _1^2+\delta _2^2-\delta _1\delta _2)\delta _1\delta _2 \\&\quad +\,4(\delta _1^2+\delta _2^2)(\delta _1+\delta _2) -3(\delta _1^2+\delta _2^2+6\delta _1\delta _2)-7(\delta _1+\delta _2)+6],\\ -4\tilde{q}_{0,2}&= (4\delta _1+1)^2\gamma ^2(1-\gamma )^2 +2(4\delta _1+1)((4\delta _1+1)\delta _2^2\\&\quad -\,2(4\delta _1+1)(\delta _1+1)\delta _2+4\delta _1^3+5\delta _1^2+2\delta _1+4)\gamma (1-\gamma ) +(4\delta _1+1)^2\delta _2^4 \\&\quad -\,4(4\delta _1+1)^2(\delta _1+1)\delta _2^3 +(32\delta _1^4+112\delta _1^3+142\delta _1^2+52\delta _1-13)\delta _2^2 \\&\quad -\, (64\delta _1^5+32\delta _1^4-92\delta _1^3+68\delta _1^2+82\delta _1-4)\delta _2 \\&-\, (4\delta _1+1)(\delta _1-1)(\delta _1+1)(\delta _1+2)(4\delta _1^2+\delta _1-6),\\ -4\tilde{q}_{2,0}&= (4\delta _2+1)^2\gamma ^2(1-\gamma )^2 +2(4\delta _2+1)((4\delta _2+1)\delta _1^2\\&-\,2(4\delta _2+1)(\delta _2+1)\delta _1+4\delta _2^3+5\delta _2^2+2\delta _2+4)\gamma (1-\gamma ) +(4\delta _2+1)^2\delta _1^4\\&\quad -\,4(4\delta _2+1)^2(\delta _2+1)\delta _1^3 +(32\delta _2^4+112\delta _2^3+142\delta _2^2+52\delta _2-13)\delta _1^2 \\&-\, (64\delta _2^5+32\delta _2^4-92\delta _2^3+68\delta _2^2+82\delta _2-4)\delta _1 \\&\quad -\, (4\delta _2+1)(\delta _2-1)(\delta _2+1)(\delta _2+2)(4\delta _2^2+\delta _2-6),\\ \frac{1}{2}\tilde{q}_{1,1}&= (28\delta _1^2\delta _2^2-4(\delta _1+\delta _2)\delta _1\delta _2+(\delta _1^2+\delta _2^2)-20\delta _1\delta _2-(\delta _1+\delta _2))\gamma (1-\gamma ) \\&\quad +\,4(7(\delta _1^2+\delta _2^2)-10\delta _1\delta _2)(\delta _1\delta _2)^2 -4(\delta _1^3+\delta _2^3)\delta _1\delta _2 \\&\quad +\,(\delta _1^4+\delta _2^4-12(\delta _1^2+\delta _2^2)\delta _1\delta _2-6(\delta _1\delta _2)^2)\\&\quad +\,2(\delta _1^2+\delta _1\delta _2+\delta _2^2)(\delta _1+\delta _2) -(\delta _1^2+\delta _2^2-14\delta _1\delta _2)-2(\delta _1+\delta _2). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iohara, K., Mathieu, O. A Global version of Grozman’s theorem. Math. Z. 274, 955–992 (2013). https://doi.org/10.1007/s00209-012-1103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1103-z

Keywords

Navigation