Skip to main content
Log in

The standard Laplace operator

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

The standard Laplace operator is a generalization of the Hodge Laplace operator on differential forms to arbitrary geometric vector bundles, alternatively it can be seen as generalization of the Casimir operator acting on sections of homogeneous vector bundles over symmetric spaces to general Riemannian manifolds. Stressing the functorial aspects of the standard Laplace operator \(\Delta \) with respect to the category of geometric vector bundles we show that the standard Laplace operator commutes not only with all homomorphisms, but also with a large class of natural first order differential operators between geometric vector bundles. Several examples are included to highlight the conclusions of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besse, A.: Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 10. Springer, Berlin (1987)

    Google Scholar 

  2. Calderbank, D., Gauduchon, P., Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry. J. Funct. Anal. 173(1), 214–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Galaev, A.: Decomposition of the covariant derivative of the curvature tensor of a pseudo-Kählerian manifold. Ann. Glob. Anal. Geom. 51(3), 245–265 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gauduchon, P.: Structures de Weyl et theoremes d’annulation sur une variete conforme autoduale. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18(4), 563–629 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Gray, A.: Compact Kähler manifolds with nonnegative sectional curvature. Invent. Math. 41, 33–43 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Heil, K., Moroianu, A., Semmelmann, U.: Killing and conformal Killing tensors. J. Geom. Phys. 106, 383–400 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Homma, Y.: Casimir Elements and Bochner Identities on Riemannian Manifolds, Progress in Mathematical Physics, vol. 34. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  8. Homma, Y.: Twisted Dirac operators and generalized gradients. Ann. Glob. Anal. Geom. 50(2), 101–127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ivanov, S.: Geometry of quaternionic Kähler connections with torsion. J. Geom. Phys. 41(3), 235–257 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Joyce, D.: Compact Manifolds with Special Holonomy, Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)

    Google Scholar 

  11. Lichnerowicz, A.: Propagateurs et commutateurs en relativite generale. Inst. Hautes Études Sci. Publ. Math. 10, 5–56 (1961)

    Article  MATH  Google Scholar 

  12. Moroianu, A., Semmelmann, U.: The Hermitian Laplace operator on nearly Kähler manifolds. Commun. Math. Phys. 294(1), 251–272 (2010)

    Article  MATH  Google Scholar 

  13. Salamon, S.: Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Mathematics Series, vol. 201. Wiley, New York (1989)

    Google Scholar 

  14. Semmelmann, U., Weingart, G.: Vanishing theorems for quaternionic Kähler manifolds. J. Reine Angew. Math. 544, 111–132 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Semmelmann, U., Weingart, G.: The Weitzenböck machine. Compos. Math. 146(2), 507–540 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Verbitsky, M.: Manifolds with parallel differential forms and Kähler identities for \({{\bf G}}_2\)-manifolds. J. Geom. Phys. 61(6), 1001–1016 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Weingart, G.: Differential Forms on Quaternionic Kähler Manifolds, Handbook of Pseudo-Riemannian Geometry and Supersymmetry, IRMA Lectures in Mathematics and Theoretical Physics, vol. 16, pp. 15–37. European Mathematical Society, Zurich (2010)

    Book  Google Scholar 

  18. Weingart, G.: Moments of sectional curvatures. https://arxiv.org/abs/1707.06369 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Weingart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semmelmann, U., Weingart, G. The standard Laplace operator. manuscripta math. 158, 273–293 (2019). https://doi.org/10.1007/s00229-018-1023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-018-1023-2

Mathematics Subject Classification

Navigation