Skip to main content
Log in

Stein complements in compact Kähler manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Given a projective or compact Kähler manifold X and a (smooth) hypersurface Y, we study conditions under which \(X {\setminus } Y\) could be Stein. We apply this in particular to the case when X is the projectivization of the so-called canonical extension of the tangent bundle \(T_M\) of a projective manifold M with Y being the projectivization of \(T_M\) itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Notes

  1. We say that a complex manifold U is affine if there exists an affine variety \(U_\textrm{alg}\) such that U is biholomorphic to the analytification of \(U_\textrm{alg}\).

  2. We thank John Ottem for explaining to us how to construct many more examples based on his earlier work: in [52, Ex. 5.5] he constructs a hypersurface \(X \subset \mathbb {P}^1 \times \mathbb {P}^3\) that admits a pseudoautomorphism \(f: X \dashrightarrow X\), in fact f flips a curve C. Given a sufficiently general divisor D of class \({\mathcal O}_{\mathbb {P}^1 \times \mathbb {P}^3}(1,1)\) that contains C, one can check that its strict transform \(f_* D=:Y \subset X\) is smooth. By construction Y is not nef, yet \(X {\setminus } Y \simeq X {\setminus } D\) is affine.

  3. The statement is for projective fourfolds, but the proof is local around the image of the exceptional locus, so it also works in the Kähler case.

  4. In particular one has \({{\,\textrm{Pic}\,}}(U) \simeq {{\,\textrm{Pic}\,}}(C) \simeq \mathbb {Z}\).

  5. Note that since S is smooth, the exceptional divisor is Cartier.

References

  1. Ancona, V., Tomassini, G.: Modifications analytiques. Lecture Notes in Mathematics, vol. 943. Springer, Berlin (1982)

  2. Andreotti, A., Stoll, W.: Extension of holomorphic maps. Ann. Math. (2) 72, 312–349 (1960)

    Article  MathSciNet  Google Scholar 

  3. Beltrametti, M.C., Sommese, A.J.: The adjunction theory of complex projective varieties, de Gruyter Expositions in Mathematics, vol. 16. Walter de Gruyter & Co., Berlin (1995)

    Book  Google Scholar 

  4. Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)

    Article  MathSciNet  Google Scholar 

  5. Boucksom, S., Demailly, J.-P., Păun, M., Peternell, T.: The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebr. Geom. 22, 201–248 (2013)

    Article  Google Scholar 

  6. Campana, F., Peternell, T.: Projective manifolds whose tangent bundles are numerically effective. Math. Ann. 289(1), 169–187 (1991)

    Article  MathSciNet  Google Scholar 

  7. Campana, F., Peternell, T.: Towards a Mori theory on compact Kähler threefolds. I. Math. Nachr. 187, 29–59 (1997)

    Article  MathSciNet  Google Scholar 

  8. Cho, K., Miyaoka, Y., Shepherd-Barron, N.I.: Characterizations of projective space and applications to complex symplectic manifolds, Higher dimensional birational geometry (Kyoto, 1997), Adv. Stud. Pure Math., vol. 35. Math. Soc. Japan, Tokyo, 2002, pp. 1–88 (1997)

  9. Claudon, B., Loray, F., Pereira, J.V., Touzet, F.: Compact leaves of codimension one holomorphic foliations on projective manifolds. Ann. Sci. Éc. Norm. Supér. (4) 51(6), 1457–1506 (2018) (English)

  10. Cutkosky, S.: Elementary contractions of Gorenstein threefolds. Math. Ann. 280(3), 521–525 (1988)

    Article  MathSciNet  Google Scholar 

  11. Debarre, O.: Higher-Dimensional Algebraic Geometry. Universitext. Springer, New York (2001)

    Book  Google Scholar 

  12. Demailly, J.-P.: Analytic methods in algebraic geometry, Surveys of Modern Mathematics, vol. 1. International Press, Somerville; Higher Education Press, Beijing (2012)

  13. Demailly, J.-P., Peternell, T., Schneider, M.: Holomorphic line bundles with partially vanishing cohomology. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc., vol. 9. Bar-Ilan Univ., Ramat Gan, pp. 165–198 (1996)

  14. Druel, S.: A decomposition theorem for singular spaces with trivial canonical class of dimension at most five. Invent. Math. 211(1), 245–296 (2018). https://doi.org/10.1007/s00222-017-0748-y

    Article  MathSciNet  Google Scholar 

  15. Fujino, O.: Termination of 4-fold canonical flips. Publ. Res. Inst. Math. Sci. 40(1), 231–237 (2004)

    Article  MathSciNet  Google Scholar 

  16. Fujino, O.: Addendum to: “Termination of 4-fold canonical flips” [Publ. Res. Inst. Math. Sci. 40 (2004), no. 1, 231–237; mr2030075]. Publ. Res. Inst. Math. Sci. 41(1), 251–257 (2005)

  17. Fulger, M.: The cones of effective cycles on projective bundles over curves. Math. Z. 269(1–2), 449–459 (2011)

    Article  MathSciNet  Google Scholar 

  18. Goodman, J.E.: Affine open subsets of algebraic varieties and ample divisors. Ann. Math. (2) 89, 160–183 (1969)

    Article  MathSciNet  Google Scholar 

  19. Gounelas, F., Ottem, J.C.: Remarks on the positivity of the cotangent bundle of a K3 surface. Épijournal Géom. Algébrique 4, Art. 8, 16 (2020)

  20. Graf, P., Schwald, M.: The Kodaira problem for Kähler spaces with vanishing first Chern class. Forum Math. Sigma 9, Paper No. e24, 15 (2021)

  21. Grauert, H., Remmert, R.: Theory of Stein spaces, Grundlehren der Mathematischen Wissenschaften, vol. 236. Springer, Berlin (1979). Translated from the German by Alan Huckleberry

  22. Greb, D., Wong, M.L.: Canonical complex extensions of Kähler manifolds. J. Lond. Math. Soc. (2) 101(2), 786–827 (2020)

    Article  MathSciNet  Google Scholar 

  23. Hartshorne, R.: Ample subvarieties of algebraic varieties, Notes written in collaboration with C. Musili. Lecture Notes in Mathematics, vol. 156. Springer, Berlin (1970)

  24. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, No. 52. Springer, New York (1977)

  25. Hironaka, H.: Flattening theorem in complex-analytic geometry. Am. J. Math. 97, 503–547 (1975)

    Article  MathSciNet  Google Scholar 

  26. Höring, A., Peternell, T.: Mori fibre spaces for Kähler threefolds. J. Math. Sci. Univ. Tokyo 22(1), 219–246 (2015)

    MathSciNet  Google Scholar 

  27. Höring, A., Peternell, T.: Minimal models for Kähler threefolds. Invent. Math. 203(1), 217–264 (2016)

    Article  MathSciNet  Google Scholar 

  28. Höring, A., Peternell, T.: Algebraic integrability of foliations with numerically trivial canonical bundle. Invent. Math. 216(2), 395–419 (2019)

    Article  MathSciNet  Google Scholar 

  29. Höring, A., Peternell, T.: A nonvanishing conjecture for cotangent bundles, arXiv preprint arXiv:2006.05225 (2020)

  30. Höring, A., Peternell, T.: Fano threefolds with affine canonical extensions, arXiv preprint arXiv:2211.11261 (2022)

  31. Huybrechts, D.: Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, vol. 158. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  32. Kaup, L., Kaup, B.: Holomorphic functions of several variables, de Gruyter Studies in Mathematics, vol. 3. Walter de Gruyter & Co., Berlin (1983). An introduction to the fundamental theory. With the assistance of Gottfried Barthel, Translated from the German by Michael Bridgland (1983)

  33. Kawamata, Y.: Small contractions of four-dimensional algebraic manifolds. Math. Ann. 284(4), 595–600 (1989)

    Article  MathSciNet  Google Scholar 

  34. Kawamata, Y.: Termination of log flips for algebraic \(3\)-folds. Int. J. Math. 3(5), 653–659 (1992)

    Article  MathSciNet  Google Scholar 

  35. Keel, S., Matsuki, K., McKernan, J.: Log abundance theorem for threefolds. Duke Math. J. 75(1), 99–119 (1994)

    Article  MathSciNet  Google Scholar 

  36. Keel, S., Matsuki, K., McKernan, J.: Corrections to: “Log abundance theorem for threefolds” [Duke Math. J. 75 (1994), no. 1, 99–119]. Duke Math. J. 122(3), 625–630 (2004)

  37. Kollár, J.: Singularities of pairs, Algebraic geometry–Santa Cruz, 1995: Proc. Sympos. Pure Math., vol. 62. Amer. Math. Soc., Providence, pp. 221–287 (1997)

  38. Kollár, J., Mori, S.: Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998). With the collaboration of C. H. Clemens and A. Corti

  39. Kosarew, S.: Ein Verschwindungssatz für gewisse Kohomologiegruppen in Umgebung kompakter komplexer Unterräume mit konvex/konkavem Normalenbündel. Math. Ann. 261(3), 315–326 (1982)

    Article  MathSciNet  Google Scholar 

  40. Kosarew, S., Peternell, T.: Formal cohomology, analytic cohomology and nonalgebraic manifolds. Compos. Math. 74(3), 299–325 (1990)

    MathSciNet  Google Scholar 

  41. Lazarsfeld, R.: Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 49. Springer, Berlin (2004). Positivity for vector bundles, and multiplier ideals

  42. Lazarsfeld, R.: Positivity in algebraic geometry. I, II, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 48. Springer, Berlin (2004)

  43. Loray, F., Pereira, J.V., Touzet, F.: Singular foliations with trivial canonical class. Invent. Math. 213(3), 1327–1380 (2018)

    Article  MathSciNet  Google Scholar 

  44. Maruyama, M.: On a family of algebraic vector bundles, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, pp. 95–146 (1973)

  45. Matsumura, S.: Asymptotic cohomology vanishing and a converse to the Andreotti–Grauert theorem on surfaces. Ann. Inst. Fourier (Grenoble) 63(6), 2199–2221 (2013)

    Article  MathSciNet  Google Scholar 

  46. Miranda, R.: The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica [Doctorate in Mathematical Research]. ETS Editrice, Pisa (1989)

  47. Mok, N.: The Serre problem on Riemann surfaces. Math. Ann. 258(2), 145–168 (1981/1982)

  48. Mori, S.: Threefolds whose canonical bundles are not numerically effective. Ann. Math. (2) 116(1), 133–176 (1982)

    Article  MathSciNet  Google Scholar 

  49. Müller, N.: Canonical extensions of manifolds with NEF tangent bundle, arXiv preprint arXiv:2211.03469 (2022)

  50. Neeman, A.: Steins, affines and Hilbert’s fourteenth problem. Ann. Math. (2) 127(2), 229–244 (1988)

    Article  MathSciNet  Google Scholar 

  51. Ohsawa, T.: A remark on pseudoconvex domains with analytic complements in compact Kähler manifolds. J. Math. Kyoto Univ. 47(1), 115–119 (2007) (English)

  52. Ottem, J.C.: Ample subvarieties and \(q\)-ample divisors. Adv. Math. 229(5), 2868–2887 (2012)

    Article  MathSciNet  Google Scholar 

  53. Pereira, J.V., Touzet, F.: Foliations with vanishing Chern classes. Bull. Braz. Math. Soc. (N.S.) 44(4), 731–754 (2013)

  54. Peternell, T.: Vektorraumbündel in der Nähe von kompakten komplexen Unterräumen. Math. Ann. 257(1), 111–134 (1981)

    Article  MathSciNet  Google Scholar 

  55. Peternell, T.: Generically nef vector bundles and geometric applications, Complex and differential geometry, Springer Proc. Math., vol. 8. Springer, Heidelberg, pp. 345–368 (2011)

  56. Potters, J.: On almost homogeneous compact complex analytic surfaces. Invent. Math. 8, 244–266 (1969)

    Article  MathSciNet  Google Scholar 

  57. Schneider, M.: Über eine Vermutung von Hartshorne. Math. Ann. 201, 221–229 (1973)

    Article  MathSciNet  Google Scholar 

  58. Steenbrink, J.H.M.: Hodge, Mixed, structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff & Noordhoff. Alphen aan den Rijn, 1977, pp. 525–563 (1976)

  59. Touzet, F.: Feuilletages holomorphes de codimension un dont la classe canonique est triviale. Ann. Sci. Éc. Norm. Supér. (4) 41(4), 655–668 (2008)

  60. Ueda, T.: On the neighborhood of a compact complex curve with topologically trivial normal bundle. J. Math. Kyoto Univ. 22, 583–607 (1983) (English)

  61. Yang, X.: A partial converse to the Andreotti–Grauert theorem. Compos. Math. 155(1), 89–99 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

For very useful discussions we thank B. Claudon, F. Gounelas, D. Greb, A. Sarti and M. Zaidenberg. The first-named author thanks the Institut Universitaire de France and the A.N.R. project Foliage (ANR-16-CE40-0008) for providing excellent working conditions. We thank the referee for very pertinent comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Höring.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Höring, A., Peternell, T. Stein complements in compact Kähler manifolds. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02801-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-024-02801-3

Mathematics Subject Classification

Navigation