Skip to main content
Log in

Hodge decompositions for Lie algebroids on manifolds with boundary

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We investigate when the Chevalley-Eilenberg differential of a complex Lie algebroid on a manifold with boundary admits a Hodge decomposition. We introduce the concepts of Cauchy-Riemann structures, elliptic and non-elliptic boundary points and Levi-forms, which we use to define the notion of q-convexity. We show that the Chevalley-Eilenberg complex of an elliptic, q-convex Lie algebroid admits a Hodge decomposition in degree q. This generalizes the well-known Hodge decompositions for the exterior derivative on real manifolds and the delbar-operator on q-convex complex manifolds. We establish the results in a more general setting, where the differential does not necessarily square to zero and moreover varies in a family, including an analysis of the behaviour on the deformation parameter. As application we give a proof of a classical holomorphic tubular neighbourhood theorem (which implies the Newlander-Nirenberg theorem) based on the Moser trick, and we provide a finite-dimensionality result for certain holomorphic Poisson cohomology groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. In fact, one can show that the Jacobi identity for \([\cdot ,\cdot ]\) itself already implies that \(\rho \) is bracket preserving.

  2. By definition, the eigenvalues of a real (1, 1)-form \(\tau \) are the eigenvalues of the Hermitian matrix \(\tau _{ij}\) with respect to a decomposition \(\tau =i\sum _{i,j}\tau _{ij}dz^i\wedge d{\bar{z}}^j\) in local coordinates.

  3. Specifically, we need that every real (1, 1)-form which is d-exact is also \(\partial {\bar{\partial }}\)-exact.

  4. This is actually not immediately obvious, but can be seen e.g. using Remark 2.27.

  5. See Remark 2.57 for why Čech-cohomology agrees with \({\bar{\partial }}\)-cohomology in this context. We abbreviate \(TU=T^{1,0}U\).

  6. By definition, \({\mathcal {S}}({\mathbb {R}}^m_-)\) is the set of functions obtained by restricting elements of \({\mathcal {S}}\) to \({\mathbb {R}}^m_{-}\).

  7. Note that \(\sigma (\Delta _t,dr)\) may only be invertible around \(\partial M\), but we can extend it in an arbitrary (but smooth) way to the interior of M.

  8. Since \(\varphi _{I,\varepsilon }^\mu |_{\partial M}=0\) whenever \(l\in I\), the sum over the eigenvalues is well-defined.

References

  1. Bailey, M.: Local classification of generalized complex structures. J. Differ. Geom. 95(1), 1–37 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bailey, M., Cavalcanti, G.R., van der Leer Durán, J.L.: A neighbourhood theorem in generalized complex geometry. arXiv:1906.12069 (under review)

  3. Conner, P.E.: The Neumann’s problem for differential forms on Riemannian manifolds. Mem. Am. Math. Soc. 20, 56 (1956)

  4. Folland, G.B.: The tangential Cauchy-Riemann complex on spheres. Am. Math. Soc. 171, 83–133 (1972). https://doi.org/10.2307/1996376Trans

    Article  MathSciNet  MATH  Google Scholar 

  5. Folland, G.B., Kohn, J.J.: The Neumann problem for the Cauchy-Riemann complex: annals of mathematics studies, no. 75. Princeton University Press, Princeton (1972)

    Google Scholar 

  6. Friedrichs, K.: Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren. Math. Ann. 109(1), 465–487 (1934). https://doi.org/10.1007/BF01449150

    Article  MathSciNet  MATH  Google Scholar 

  7. Grauert, H.: On Levi’s problem and the imbedding of real-analytic manifolds. Ann. Math. 2(68), 460–472 (1958). https://doi.org/10.2307/1970257

  8. Grauert, H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331–368 (1962)

    Article  MathSciNet  Google Scholar 

  9. Griffiths, P.A.: The extension problem in complex analysis. II. Embeddings with positive normal bundle. Am. J. Math. 88, 366–446 (1966). https://doi.org/10.2307/2373200

    Article  MathSciNet  MATH  Google Scholar 

  10. Gualtieri, M.: Generalized complex geometry. Ann. Math. 174(1), 75–123 (2011). https://doi.org/10.4007/annals.2011.174.1.3

    Article  MathSciNet  MATH  Google Scholar 

  11. Hitchin, N.: Generalized Calabi-Yau manifolds. J. Math. 54(3), 281–308 (2003). https://doi.org/10.1093/qjmath/54.3.281Q

    Article  MathSciNet  MATH  Google Scholar 

  12. Hörmander, L.: Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, vol. 116. Springer, New York (1963)

    Book  Google Scholar 

  13. Hörmander, L.: \(L^{2}\) estimates and existence theorems for the \(\bar{\partial }\) operator. Mathematics 113, 89–152 (1965). https://doi.org/10.1007/BF02391775Acta

    Article  MATH  Google Scholar 

  14. Kohn, J.J.: Harmonic integrals on strongly pseudo-convex manifolds. II. Ann. Math. 79, 450–472 (1964). https://doi.org/10.2307/1970404

    Article  MathSciNet  MATH  Google Scholar 

  15. Levi, E.E.: Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse. Annali di Matematica Pura ed Applicata (1898-1922) 17(1), 61–87 (1910). https://doi.org/10.1007/BF02419336

    Article  MATH  Google Scholar 

  16. Lopatinsky, Y.B.: On a method of reducing boundary problems for a system of differential equations of elliptic type to regular integral equations, Ukrain. Math. Z. 5, 123–151 (1953)

    Google Scholar 

  17. Malgrange, B.: La cohomologie d’une variété analytique complexe à bord pseudo-convexe n’est pas nécessairement séparée, C. R. Acad. Sci. Paris Sér. A-B 280, A93–A95 (1975)

  18. Morrey, C.B., Jr.: The analytic embedding of abstract real-analytic manifolds. Ann. Math. 68, 159–201 (1958). https://doi.org/10.2307/1970048

    Article  MathSciNet  MATH  Google Scholar 

  19. Moser, J.: A rapidly convergent iteration method and non-linear partial differential equations. I. Ann. Scuola Norm. Sup. Pisa 20, 265–315 (1966)

    MathSciNet  MATH  Google Scholar 

  20. Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956). https://doi.org/10.2307/1969989

    Article  MathSciNet  MATH  Google Scholar 

  21. Newlander, A., Nirenberg, L.: Complex analytic coordinates in almost complex manifolds. Ann. Math. 65, 391–404 (1957)

    Article  MathSciNet  Google Scholar 

  22. Pradines, J.: Théorie de Lie pour les groupoïdes différentiables. Calcul différenetiel dans la catégorie des groupoïdes infinitésimaux, C. R. Acad. Sci. Paris Sér. A-B 264, A245–A248 (1967)

    MathSciNet  MATH  Google Scholar 

  23. Weil, A.: Introduction ã l’étude des variétés kählériennes. (French) Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267. Hermann, Paris (1958)

Download references

Acknowledgements

The author is thankful to Micheal Bailey, Gil Cavalcanti, Marco Gualtieri and Brent Pym for useful conversations.

Funding

This research is supported by NSERC Discovery Grant 355576.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Code availability

Not applicable.

Additional information

Communicated by F. C. Marques.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

In this appendix we collect some “Leibniz” rules involving Sobolev norms. We will use the notation of Sect. 3.3, and start with some numerical estimates.

Lemma A.1

Let \(k\in {\mathbb {R}}\) be a real number.

  1. i)

    For all \(\xi ,\eta \in {\mathbb {R}}^m\) we have \(\Big (\frac{1+|\xi |^2}{1+|\eta |^2}\Big )^k \le 2^{|k|} (1+|\xi -\eta |^2)^{|k|}\).

  2. ii)

    Define \(K_1(\xi ,\eta ):= (1+|\xi |^2)^{k/2}-(1+|\eta |^2)^{k/2}\), where \(\xi ,\eta \in {\mathbb {R}}^m\). Then

    $$\begin{aligned} |K_1(\xi ,\eta )|&\le |k|\cdot |\xi -\eta | \cdot \big ((1+|\xi |^2)^{\frac{k-1}{2}}+(1+|\eta |^2)^{\frac{k-1}{2}}\big ). \end{aligned}$$
  3. iii)

    Define \(K_3(\xi ,\eta _1,\eta _2):= (1+|\xi |^2)^{\frac{k}{2}}+(1+|\eta _1|^2)^{\frac{k}{2}}-(1+|\eta _2|^2)^{\frac{k}{2}}-(1+|\xi +\eta _1-\eta _2|^2)^{\frac{k}{2}}\), where \(\xi ,\eta _1,\eta _2\in {\mathbb {R}}^m\). Setting \(C:=k(k-1)\), we have

    $$\begin{aligned}&|K_3(\xi ,\eta _1,\eta _2)|\le C |\xi -\eta _2| \cdot |\eta _1-\eta _2|\cdot \int _0^1 \int _0^1 (1+\big |\xi +t(\eta _1-\eta _2)\nonumber \\&\quad +t'(\eta _2-\xi )\big |^2)^{\frac{k-2}{2}} dtdt'. \end{aligned}$$

Proof

i) See [5, Lemma (A.1.3)].

ii) Consider the smooth function \(f(x):=(1+x^2)^{k/2}\) on \({\mathbb {R}}_{\ge 0}\). For all \(x,y\in {\mathbb {R}}_{\ge 0}\) we have

$$\begin{aligned} |f(x)-f(y)|\le |x-y|\sup _{x\le z \le y} |f'(z)| \le |k| |x-y| \big ((1+x^2)^{\frac{k-1}{2}}+(1+y^2)^{\frac{k-1}{2}}\big ). \end{aligned}$$

Setting \(x=|\xi |\), \(y=|\eta |\) and using \(| |\xi |- |\eta | |\le |\xi -\eta |\), we obtain (ii).

iii): Define \(g(x):=(1+|x|^2)^{k/2}\) so that \(K_3(\xi ,\eta _1,\eta _2)=g(\xi )+g(\eta _1)-g(\eta _2)-g(\xi +\eta _1-\eta _2)\). A couple of applications of the fundamental theorem of calculus gives

$$\begin{aligned} K_3(\xi ,\eta _1,\eta _2)=\sum _{i,j} (\eta _2-\xi )^i(\eta _1-\eta _2)^j \int _0^1\int _0^1 \partial _i\partial _jg(\xi +t'(\eta _2-\xi )+t(\eta _1-\eta _2))dtdt', \end{aligned}$$

from which the desired estimate readily follows. \(\square \)

Below we will write \(\alpha \lesssim \beta \) if there is a constant C such that \(\alpha \le C \beta \). The only constraint on C is that it is independent of the functions f, g and \(\varphi \) appearing in the inequalities below.

Proposition A.2

Set \(a:=1+\frac{m}{2}\), where m is the dimension of Euclidean space.

i) For \(s\ge 0\) and \(f,\varphi \in {\mathcal {S}}\) we have

$$\begin{aligned} || f\varphi ||_s \lesssim ||f||_{s+a} ||\varphi ||+||f||_{a} ||\varphi ||_{s}. \end{aligned}$$
(A.1)

For \(s\in {\mathbb {R}}\) and \(f,\varphi \in {\mathcal {S}}\) we have

$$\begin{aligned} || f\varphi ||_s \lesssim ||f||_{|s|+a} ||\varphi ||_s. \end{aligned}$$
(A.2)

ii) For \(s\in {\mathbb {R}}_{\ge 0}\), \(k\in {\mathbb {R}}_{\ge 1}\) and \(f,\varphi \in {\mathcal {S}}\) we have

$$\begin{aligned} || [\Lambda ^k,f]\varphi ||_s \lesssim&||f||_{s+k+a} ||\varphi ||+||f||_{k+a} ||\varphi ||_{s}+||f||_{s+1+a} ||\varphi ||_{k-1}+||f||_{1+a} ||\varphi ||_{s+k-1}. \end{aligned}$$
(A.3)

For \(s,k\in {\mathbb {R}}\) and \(f,\varphi \in {\mathcal {S}}\) we have

$$\begin{aligned} || [\Lambda ^k,f]\varphi ||_s&\lesssim (||f||_{|s+k-1|+1+a} +||f||_{|s|+1+a}) ||\varphi ||_{s+k-1}. \end{aligned}$$
(A.4)

iii) For \(s\in {\mathbb {R}}_{\ge 0}\), \(k\in {\mathbb {R}}_{\ge 1}\) and \(f,\varphi \in {\mathcal {S}}\) we have

$$\begin{aligned} || [\Lambda ^k,[\Lambda ^k,f]] \varphi ||_s \lesssim \;&||f||_{2k+s+a} ||\varphi ||+||f||_{2k+a}||\varphi ||_{s}\nonumber \\&+||f||_{2+a}||\varphi ||_{2k+s-2} +||f||_{s+2+a}||\varphi ||_{2k-2}. \end{aligned}$$
(A.5)

For \(s,k\in {\mathbb {R}}\) and \(f,\varphi \in {\mathcal {S}}\) we have

$$\begin{aligned} || [\Lambda ^k,[\Lambda ^k,f]] \varphi ||_s&\lesssim (||f||_{|s+2k-2|+2+a}+||f||_{|s|+2+a} )|| \varphi ||_{s+2k-2}. \end{aligned}$$
(A.6)

iv) For \(s\in {\mathbb {R}}_{\ge 0}\), \(k\in {\mathbb {R}}_{\ge 2}\) and \(f,g,\varphi \in {\mathcal {S}}\) we have

$$\begin{aligned} || [[\Lambda ^k,f],&g]\varphi ||_s \lesssim \big ( ||f||_{k-1+s+a} ||g||_{1+a}+||f||_{k-1+a} ||g||_{s+1+a}+||f||_{s+1+a} ||g||_{k-1+a}\nonumber \\&+||f||_{1+a} ||g||_{k-1+s+a}\big )||\varphi ||_{}+(||f||_{k-1+a} ||g||_{1+a}+||f||_{1+a} ||g||_{k-1+a})||\varphi ||_{s} \nonumber \\&+ (||f||_{s+1+a} ||g||_{1+a}+||f||_{1+a} ||g||_{s+1+a})||\varphi ||_{k-2}+||f||_{1+a} ||g||_{1+a}||\varphi ||_{k-2+s}. \end{aligned}$$
(A.7)

For \(s,k\in {\mathbb {R}}\) and \(f,g,\varphi \in {\mathcal {S}}\) we have

$$\begin{aligned} || [[\Lambda ^k,f],g]\varphi ||_s \lesssim \big (&||f||_{1+|s|+|k-2|+a} ||g||_{1+a}+||f||_{1+|s|+a} ||g||_{1+|k-2|+a} \nonumber \\&+||f||_{1+|k-2|+a} ||g||_{1+|s|+a} +||f||_{1+a} ||g||_{1+|s|+|k-2|+a} \big ) ||\varphi ||_{s+k-2}. \end{aligned}$$
(A.8)

Proof

i) Using \(\widehat{f\varphi }={\widehat{f}}\star {\widehat{\varphi }}\), where \(\star \) denotes convolution product, we obtain

$$\begin{aligned} || f\varphi ||^2_s&= \int (1+|\xi |^2)^s |\widehat{f\varphi }(\xi )|^2 d\xi \le \int \Big ( \int (1+|\xi |^2)^{s/2}|{\widehat{f}}(\xi -\eta )| |{\widehat{\varphi }}(\eta )|d\eta \Big )^2 d\xi . \end{aligned}$$

If \(s\ge 0\) we can use the triangle inequality (raised to a non-negative power) to estimate

$$\begin{aligned} (1+|\xi |^2)^{s/2}\lesssim (1+|\xi -\eta |^2)^{s/2}+ (1+|\eta |^2)^{s/2}. \end{aligned}$$

Using the Cauchy-Schwarz inequality we get

$$\begin{aligned}&\int (1+|\eta |^2)^{s/2}|{\widehat{f}}(\xi -\eta )| |{\widehat{\varphi }}(\eta )|d\eta \\&\quad \le \Big ( \int |{\widehat{f}}(\xi -\eta )| d\eta \Big )^{\frac{1}{2}} \cdot \Big ( \int (1+|\eta |^2)^{s}|{\widehat{f}}(\xi -\eta )| |{\widehat{\varphi }}(\eta )|^2d\eta \Big )^{\frac{1}{2}}, \end{aligned}$$

which implies that

$$\begin{aligned} \int \Big ( \int (1+|\eta |^2)^{s/2}|{\widehat{f}}(\xi -\eta )| |{\widehat{\varphi }}(\eta )|d\eta \Big )^2 d\xi \le \Big ( \int |{\widehat{f}}(\eta )| d\eta \Big )^2 \cdot ||\varphi ||_s^2\lesssim ||f||^2_a ||\varphi ||_s^2. \end{aligned}$$

Here in the last step we applied the Cauchy-Schwarz inequality again to estimate

$$\begin{aligned} \Big (\int |{\widehat{f}}(\eta )| d\eta \Big )^2 \le \int (1+|\eta |^2)^{-a} d\eta \int (1+|\eta |^2)^{a} |{\widehat{f}}(\eta )|^2 d\eta \le C ||f||^2_a \end{aligned}$$

where C is finite because \(a>m/2\). In a similar fashion one proves that

$$\begin{aligned} \int \Big ( \int (1+|\xi -\eta |^2)^{s/2}|{\widehat{f}}(\xi -\eta )| |{\widehat{\varphi }}(\eta )|d\eta \Big )^2 d\xi \lesssim ||f||_{s+a} ||\varphi ||^2, \end{aligned}$$

proving (A.1). For arbitrary \(s\in {\mathbb {R}}\) we have to replace the triangle inequality with the bound

$$\begin{aligned} (1+|\xi |^2)^{s/2}\lesssim (1+|\xi -\eta |^2)^{|s|/2}(1+|\eta |^2)^{s/2} \end{aligned}$$

which follows from Lemma A.1i). The rest of the steps are then similar to the ones above.

ii) The strategy is the same as in (i). First we observe that

$$\begin{aligned} {\mathcal {F}}([\Lambda ^k,f]\varphi )(\xi )= \int K_1(\xi ,\eta ) {\widehat{f}}(\xi -\eta ) {\widehat{\varphi }}(\eta ) d\eta , \end{aligned}$$

where \(K_1\) was defined in Lemma A.1ii). When \(k-1\ge 0\) and \(s\ge 0\), the triangle inequality together with Lem.A.1ii) imply that

$$\begin{aligned} (1+|\xi |^2)^{s/2}|K_1(\xi ,\eta )|&\lesssim (1+|\xi -\eta |^2)^{\frac{s+k}{2}} +(1+|\xi -\eta |^2)^{\frac{k}{2}}(1+|\eta |^2)^{\frac{s}{2}} \\&+ (1+|\xi -\eta |^2)^{\frac{s+1}{2}}(1+|\eta |^2)^{\frac{k-1}{2}}+(1+|\xi -\eta |^2)^{\frac{1}{2}}(1+|\eta |^2)^{\frac{s+k-1}{2}}. \end{aligned}$$

The same steps as in i) then yield (A.3). For arbitrary s and k we use Lemma A.1ii) to estimate

$$\begin{aligned} (1+|\xi |^2)^{s/2}|K_1(\xi ,\eta )|&\lesssim \big ( (1+|\xi -\eta |^2)^{\frac{1+|s+k-1|}{2}}+(1+|\xi -\eta |^2)^{\frac{1+|s|}{2}}\big )(1+|\eta |^2)^{\frac{k+s-1}{2}}, \end{aligned}$$

giving (A.4).

iii) We have

$$\begin{aligned} {\mathcal {F}}([\Lambda ^k,[\Lambda ^k,f]]\varphi )(\xi )= \int K_2(\xi ,\eta ) {\widehat{f}}(\xi -\eta ) {\widehat{\varphi }}(\eta ) d\eta , \end{aligned}$$

where \(K_2(\xi ,\eta ):= \big ( (1+|\xi |^2)^{k/2}-(1+|\eta |^2)^{k/2} \big )^2=K_1(\xi ,\eta )^2\). Using Lemma A.1ii) we obtain

$$\begin{aligned} (1+|\xi |^2)^{s/2}|K_2(\xi ,\eta )|\lesssim&\ (1+|\xi -\eta |^2)^{\frac{s}{2}+k} +(1+|\xi -\eta |^2)^{\frac{s}{2}+1}(1+|\eta |^2)^{k-1} \\&+ (1+|\xi -\eta |^2)^{k}(1+|\eta |^2)^{\frac{s}{2}}+(1+|\xi -\eta |^2)^{}(1+|\eta |^2)^{\frac{s}{2}+k-1}, \end{aligned}$$

valid for \(s\ge 0\) and \(k\ge 1\). The same steps as in (i) then give (A.5). For arbitrary s and k we use Lemma A.1i) to estimate

$$\begin{aligned} (1+|\xi |^2)^{s/2}|K_2(\xi ,\eta )|&\lesssim \big ( (1+|\xi -\eta |^2)^{|\frac{s}{2}+k-1|+1}+(1+|\xi -\eta |^2)^{|\frac{s}{2}|+1}\big )(1+|\eta |^2)^{\frac{s}{2}+k-1}, \end{aligned}$$

which gives (A.6).

iv): We have

$$\begin{aligned} {\mathcal {F}}([[\Lambda ^k,f],g]\varphi )(\xi )= \iint K_3(\xi ,\eta _1,\eta _2) {\widehat{f}}(\xi -\eta _2) {\widehat{g}}(\eta _2-\eta _1) {\widehat{\varphi }}(\eta _1) d\eta _1d\eta _2, \end{aligned}$$

where \(K_3\) was defined in Lemma A.1iv). Consequently, for \(s\ge 0\) and \(k\ge 2\) we have

$$\begin{aligned} (1+|\xi |^2)^{\frac{s}{2}}|K_3(\xi ,\eta&)|\lesssim (1+|\xi -\eta _2|^2)^{\frac{1}{2}}(1+|\eta _1-\eta _2|^2)^{\frac{1}{2}} \Big ( (1+|\xi -\eta _2|^2)^{\frac{s}{2}} \\&+ (1+|\eta _1-\eta _2|^2)^{\frac{s}{2}}\\&+(1+|\eta _1|^2)^{\frac{s}{2}}\Big )\Big ((1+|\xi -\eta _2|^2)^{\frac{k-2}{2}} \\&+ (1+|\eta _1-\eta _2|^2)^{\frac{k-2}{2}}+(1+|\eta _1|^2)^{\frac{k-2}{2}}\Big ). \end{aligned}$$

Expanding this out gives nine terms, leading to (A.7) by using the same steps as in i).

For arbitrary s and k we use Lemma A.1 ii) to bound

$$\begin{aligned}&\quad (1+\big |\xi +t(\eta _1-\eta _2)+t'(\eta _2-\xi )\big |^2)^{\frac{k-2}{2}}\\&\quad =\Big (\frac{1+\big |\xi +t(\eta _1-\eta _2) +t'(\eta _2-\xi )\big |^2}{1+|\eta _1|^2}\Big )^{\frac{k-2}{2}} (1+|\eta _1|^2)^{\frac{k-2}{2}}\\&\quad \lesssim (1+\big |\xi -\eta _1+t(\eta _1-\eta _2)+t'(\eta _2-\xi )\big |^2)^{|\frac{k-2}{2}|} \\&\quad \quad (1+|\eta _1|^2)^{\frac{k-2}{2}}\\&\quad \lesssim \big ((1+|\xi -\eta _2|^2)^{|\frac{k-2}{2}|}+(1+|\eta _1-\eta _2|^2)^{|\frac{k-2}{2}|}\big )\\&\quad \quad (1+|\eta _1|^2)^{\frac{k-2}{2}}, \end{aligned}$$

where we used \(\xi -\eta _1+t(\eta _1-\eta _2)+t'(\eta _2-\xi )=(1-t')(\xi -\eta _2)+(1-t)(\eta _2-\eta _1)\). Proceeding as before yields (A.8). \(\square \)

There is also a boundary version of Proposition A.2. We continue with the notation of Sect. 3.3, and denote by \(\lceil s \rceil \) the smallest integer greater or equal than s. For \(K\subset {\mathbb {R}}^m_-\) we denote by \(C^\infty _K({\mathbb {R}}^m_-) \subset {\mathcal {S}}({\mathbb {R}}^m_-)\) the functions with support in K.

Proposition A.3

Let \(K\subset {\mathbb {R}}^m_-\) be a compact subset and let \(a=1+\frac{m}{2}\).

i) For \(s\ge 0\) and \(f\in C^\infty _K({\mathbb {R}}^m_-)\), \(\varphi \in {\mathcal {S}}({\mathbb {R}}^m_-)\) we have

$$\begin{aligned} || f\varphi ||_{\partial ,s} \lesssim |f|_{\lceil s+a\rceil } ||\varphi ||_\partial +|f|_{\lceil a\rceil } ||\varphi ||_{\partial ,s}. \end{aligned}$$
(A.9)

For \(s\in {\mathbb {R}}\) and \(f\in C^\infty _K({\mathbb {R}}^m_-)\), \(\varphi \in {\mathcal {S}}({\mathbb {R}}^m_-)\) we have

$$\begin{aligned} || f\varphi ||_{\partial ,s} \lesssim |f|_{\lceil |s|+a\rceil } ||\varphi ||_{\partial ,s}. \end{aligned}$$
(A.10)

ii) For \(s\in {\mathbb {R}}_{\ge 0}, k\in {\mathbb {R}}_{\ge 1}\) and \(f\in C^\infty _K({\mathbb {R}}^m_-) ,\varphi \in {\mathcal {S}}({\mathbb {R}}^m_-)\) we have

$$\begin{aligned} || [\Lambda ^k_\partial ,f]\varphi ||_{\partial ,s} \lesssim&\ |f|_{\lceil s+k+a\rceil } ||\varphi ||_\partial +|f|_{\lceil k+a\rceil } ||\varphi ||_{\partial ,s}\nonumber \\&+|f|_{\lceil s+1+a\rceil } ||\varphi ||_{\partial ,k-1}+|f|_{\lceil 1+a\rceil } ||\varphi ||_{\partial ,s+k-1}. \end{aligned}$$
(A.11)

For \(s,k\in {\mathbb {R}}\) and \(f\in C^\infty _K({\mathbb {R}}^m_-),\varphi \in {\mathcal {S}}({\mathbb {R}}^m_-)\) we have

$$\begin{aligned} || [\Lambda ^k_\partial ,f]\varphi ||_{\partial ,s}&\lesssim (|f|_{\lceil |s+k-1|+1+a\rceil } +|f|_{\lceil |s|+1+a\rceil }) ||\varphi ||_{\partial ,s+k-1}. \end{aligned}$$
(A.12)

iii) For \(s\in {\mathbb {R}}_{\ge 0}\), \(k\in {\mathbb {R}}_{\ge 1}\) and \(f\in C^\infty _K({\mathbb {R}}^m_-), \varphi \in {\mathcal {S}}({\mathbb {R}}^m_-)\) we have

$$\begin{aligned} || [\Lambda ^k_\partial ,[\Lambda ^k_\partial ,f]] \varphi ||_{\partial ,s} \lesssim&\ |f|^2_{\lceil 2k+s+a\rceil } ||\varphi ||^2_\partial +|f|^2_{\lceil 2+a\rceil }||\varphi ||^2_{\partial ,2k+s-2} \nonumber \\&+|f|_{\lceil 2k+a\rceil }||\varphi ||_{\partial ,s}+|f|^2_{\lceil s+2+a\rceil }||\varphi ||^2_{\partial ,2k-2}. \end{aligned}$$
(A.13)

For \(s,k\in {\mathbb {R}}\) and \(f\in C^\infty _K({\mathbb {R}}^m_-), \varphi \in {\mathcal {S}}({\mathbb {R}}^m_-)\) we have

$$\begin{aligned} || [\Lambda ^k_\partial ,[\Lambda ^k_\partial ,f]] \varphi ||_{\partial ,s}&\lesssim (|f|_{\lceil |s+2k-2|+2+a\rceil }+|f|_{\lceil |s|+2+a\rceil } )|| \varphi ||_{\partial ,s+2k-2}. \end{aligned}$$
(A.14)

iv) For \(s\in {\mathbb {R}}_{\ge 0},k\in {\mathbb {R}}_{\ge 2}\) and \(f,g\in C^\infty _K({\mathbb {R}}^m_-), \varphi \in {\mathcal {S}}({\mathbb {R}}^m_-)\) we have

$$\begin{aligned} ||&[[\Lambda ^k_\partial ,f],g]\varphi ||_{\partial ,s} \lesssim \big ( |f|_{\lceil k-1+s+a\rceil } |g|_{\lceil 1+a\rceil }+|f|_{\lceil k-1+a\rceil } |g|_{\lceil s+1+a\rceil }+|f|_{\lceil s+1+a\rceil } |g|_{\lceil k-1+a\rceil }\nonumber \\&+|f|_{\lceil 1+a\rceil } |g|_{\lceil k-1+s+a\rceil }\big )||\varphi ||_{\partial }+(|f|_{\lceil k-1+a\rceil } |g|_{\lceil 1+a\rceil }+|f|_{\lceil 1+a\rceil } |g|_{\lceil k-1+a\rceil })||\varphi ||_{\partial ,s} \nonumber \\&+ (|f|_{\lceil s+1+a\rceil } |g|_{\lceil 1+a\rceil }+|f|_{\lceil 1+a\rceil } |g|_{\lceil s+1+a\rceil })||\varphi ||_{\partial ,k-2}+|f|_{\lceil 1+a\rceil } |g|_{\lceil 1+a\rceil }||\varphi ||_{\partial ,k-2+s}. \end{aligned}$$
(A.15)

For \(s,k\in {\mathbb {R}}\) and \(f,g\in C^\infty _K({\mathbb {R}}^m_-), \varphi \in {\mathcal {S}}({\mathbb {R}}^m_-)\) we have

$$\begin{aligned} || [[\Lambda ^k_\partial ,f],g]\varphi ||_{\partial ,s} \lesssim \big (&|f|_{\lceil 1+|s|+|k-2|+a\rceil } |g|_{1+a}+|f|_{\lceil 1+|s|+a\rceil } |g|_{\lceil 1+|k-2|+a\rceil } \nonumber \\&+|f|_{\lceil 1+|k-2|+a\rceil } |g|_{\lceil 1+|s|+a\rceil } +|f|_{\lceil 1+a\rceil } |g|_{\lceil 1+|s|+|k-2|+a\rceil } \big ) ||\varphi ||_{\partial ,s+k-2}. \end{aligned}$$
(A.16)

Proof

For each value of r we can consider the inequalities of Proposition A.2 for the functions \(f(\cdot ,r)\), \(g(\cdot ,r)\) and \(\varphi (\cdot ,r)\) on \({\mathbb {R}}^{m-1}\). Integrating these over r and using \(||f(\cdot ,r) ||_{s}\le C |f(\cdot ,r)|_{\lceil s \rceil }\le C |f|_{\lceil s \rceil }\) for \(s\in {\mathbb {R}}_{\ge 0}\) (where C depends on \(K\subset {\mathbb {R}}^m_-\)), we obtain (A.11)–(A.16). \(\square \)

Finally we mention a version of Rellich’s lemma for the norm \(||\text {D}(\cdot )||_{\partial ,-1/2}\), whose proof is outlined in the appendix of [5] (see the discussion preceding Proposition A.3.1).

Proposition A.4

If a sequence \(\varphi _j\in C^\infty _K({\mathbb {R}}^m_-)\) satisfies a uniform bound \(||\text {D}\varphi _j||_{\partial ,-1/2}\le C\), then a subsequence converges in \(L^2({\mathbb {R}}^m)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Leer Durán, J.L. Hodge decompositions for Lie algebroids on manifolds with boundary. Math. Ann. 382, 303–356 (2022). https://doi.org/10.1007/s00208-021-02293-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02293-5

Mathematics Subject Classification

Navigation