Skip to main content
Log in

Proper affine actions: a sufficient criterion

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

A Correction to this article was published on 17 November 2021

This article has been updated

Abstract

For a semisimple real Lie group G with a representation \(\rho \) on a finite-dimensional real vector space V, we give a sufficient criterion on \(\rho \) for existence of a group of affine transformations of V whose linear part is Zariski-dense in \(\rho (G)\) and that is free, nonabelian and acts properly discontinuously on V. This new criterion is more general than the one given in Smilga (Groups Geom Dyn 12(2):449–528, 2018), insofar as it also deals with “swinging” representations. When G is split, almost all the irreducible representations of G that have 0 as a weight satisfy this criterion. We conjecture that it is actually a necessary and sufficient criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Abels, H.: Properly discontinuous groups of affine transformations, a survey. Geom. Dedicata 87, 309–333 (2001)

    Article  MathSciNet  Google Scholar 

  2. Abels, H., Margulis, G.A., Soifer, G.A.: On the Zariski closure of the linear part of a properly discontinuous group of affine transformations. J. Differ. Geom. 60, 315–344 (2002)

    Article  MathSciNet  Google Scholar 

  3. Abels, H., Margulis, G.A., Soifer, G.A.: The linear part of an affine group acting properly discontinuously and leaving a quadratic form invariant. Geom. Dedicata 153, 1–46 (2011)

    Article  MathSciNet  Google Scholar 

  4. Abels, H., Margulis, G.A., Soifer, G.A.: The Auslander conjecture for dimension less than 7 (submitted). arxiv:1211.2525

  5. Auslander, L.: The structure of complete locally affine manifolds. Topology 3, 131–139 (1964)

    Article  MathSciNet  Google Scholar 

  6. Benoist, Y.: Actions propres sur les espaces homogènes réductifs. Ann. Math. 144, 315–347 (1996)

    Article  MathSciNet  Google Scholar 

  7. Benoist, Y.: Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal. 7, 1–47 (1997)

    Article  MathSciNet  Google Scholar 

  8. Benoist, Y., Quint, J.F.: Random walks on reductive groups. Springer International Publishing, Berlin (2016)

    Book  Google Scholar 

  9. Borel, A., Tits, J.: Groupes réductifs. Publ. Math. Inst. Hautes Études Sci. 27, 55–151 (1965)

    Article  Google Scholar 

  10. Borel, A., Tits, J.: Compléments à l’article “Groupes réductifs ”. Publ. Math. Inst. Hautes Études Sci. 41, 253–276 (1972)

    Article  Google Scholar 

  11. Danciger, J., Guéritaud, F., Kassel, F.: Proper affine action of right-angled Coxeter groups. Duke Math. J. 169, 2231–2280 (2020)

    Article  MathSciNet  Google Scholar 

  12. Eberlein, P.B.: Geometry of nonpositively curved manifolds. University of Chicago Press, Chicago (1996)

    MATH  Google Scholar 

  13. Fried, D., Goldman, W.M.: Three-dimensional affine crystallographic groups. Adv. Math. 47, 1–49 (1983)

    Article  MathSciNet  Google Scholar 

  14. Hall, B.C.: Lie Groups, Lie Algebras and Representations: An Elementary Introduction, second edn. Springer International Publishing (2015)

  15. Helgason, S.: Geometric analysis on symmetric spaces, 2nd edn. Amer. Math Soc (2008)

  16. Humphreys, J.: Linear algebraic groups. Springer, Berlin (1975)

    Book  Google Scholar 

  17. Knapp, A.W.: Lie groups beyond an introduction. Birkhaüser, Basel (1996)

    Book  Google Scholar 

  18. Le Floch, B., Smilga, I.: Action of Weyl group on zero-weight space. C. R. Math. Acad. Sci. Paris 356(8), 852–858 (2018)

    Article  MathSciNet  Google Scholar 

  19. Margulis, G.A.: Free properly discontinuous groups of affine transformations. Dokl. Akad. Nauk SSSR 272, 785–788 (1983)

    MathSciNet  Google Scholar 

  20. Margulis, G.A.: Complete affine locally flat manifolds with a free fundamental group. J. Soviet Math. 36, 129–139 (1987)

    Article  Google Scholar 

  21. Milnor, J.: On fundamental groups of complete affinely flat manifolds. Adv. Math. 25, 178–187 (1977)

    Article  MathSciNet  Google Scholar 

  22. Smilga, I.: Proper affine actions on semisimple Lie algebras. Ann. Inst. Fourier 66(2), 785–831 (2016)

    Article  MathSciNet  Google Scholar 

  23. Smilga, I.: Proper affine actions in non-swinging representations. Groups Geom. Dyn. 12(2), 449–528 (2018)

    Article  MathSciNet  Google Scholar 

  24. Tits, J.: Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque. J. Reine Angew. Math. 247, 196–220 (1971)

    MathSciNet  MATH  Google Scholar 

  25. Tomanov, G.: Properly discontinuous group actions on affine homogeneous spaces. Proc. Steklov Inst. Math. 292, 260–271 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am very grateful to my Ph.D. advisor, Yves Benoist, who introduced me to this exciting and fruitful subject, and gave invaluable help and guidance in my initial work on this project. I would also like to thank Bruno Le Floch for some interesting discussions, which in particular helped me gain more insight about weights of representations. Thanks to the Yale University (and my colleagues from there), where almost all of the work on this paper has been conducted, for the wonderful working conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia Smilga.

Additional information

Communicated by Thomas Schick.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smilga, I. Proper affine actions: a sufficient criterion. Math. Ann. 382, 513–605 (2022). https://doi.org/10.1007/s00208-020-02100-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02100-7

Keywords

Mathematics Subject Classification

Navigation