Skip to main content
Log in

Unisingular representations in arithmetic and Lie theory

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let G be a subgroup of \(\hbox {GL}(V)\), where V is a finite dimensional vector space over a finite field of characteristic \(p >0\). If \(\det (g-1) = 0\) for all \(g \in G\) then we call G a fixed-point subgroup of \(\hbox {GL}(V)\). Motivated in parallel by questions in arithmetic and linear group theory, we classify all irreducible fixed-point subgroups of \({\text {Sp}}_8(2)\) and give new infinite series of irreducible fixed-point subgroups of symplectic groups \({\text {Sp}}_m(2)\) for various m arising from certain representations of groups of Lie type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Booker, A.R., Sijsling, J., Sutherland, A.V., Voight, J., Yasaki, D.: A database of genus-2 curves over the rational numbers. LMS J. Comput. Math. 19(Suppl A), 235–254 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bourbaki, N.: Groupes et algèbres de Lie. Chapitres IV–VI. Masson, Paris (1981)

  4. Bourbaki, N.: Groupes et algèbres de Lie. Chapitres VII–VIII. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Bray, J.N., Holt, D.F., Roney-Dougal, C.M.: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups: With a Foreword by Martin Liebeck. London Mathematical Society Lecture Note Series, vol. 407. Cambridge University Press, Cambridge (2013)

  6. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: An ATLAS of Finite Groups. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  7. Cullinan, J.: Local-global properties of torsion points on three-dimensional abelian varieties. J. Algebra 311(2), 736–774 (2007)

    Article  MathSciNet  Google Scholar 

  8. Cullinan, J.: A computational approach to the 2-torsion structure of abelian threefolds. Math. Comp. 78(267), 1825–1836 (2009)

    Article  MathSciNet  Google Scholar 

  9. Cullinan, J.: Points of small order on three-dimensional abelian varieties. With an appendix by Yuri Zarhin. J. Algebra 324(3), 565–577 (2010)

    Article  MathSciNet  Google Scholar 

  10. Cullinan, J.: Fixed-point subgroups of \({{\rm GL}}_3(q)\). J. Group Theory 22(5), 893–914 (2019)

    Article  MathSciNet  Google Scholar 

  11. Cullinan, J., Yelton, J.: Divisibility properties of torsion subgroups of abelian surfaces. Canadian. J. Math. 1–33 (2020). https://doi.org/10.4153/S0008414X20000759

  12. Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. Pure and Applied Mathematics, vol. 11. Interscience, New York (1962)

    MATH  Google Scholar 

  13. Digne, F., Michel, J.: Representations of Finite Groups of Lie Type. London Mathematical Society Student Texts, vol. 21. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  14. Dixon, J.D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer, Berlin (1996)

    Book  Google Scholar 

  15. Feit, W.: The Representation Theory of Finite Groups. Mathematical Library, vol. 25. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  16. Guralnick, R.: Tiep, Pham Huu: finite simple unisingular groups of Lie type. J. Group Theory 6(3), 271–310 (2003)

    Article  MathSciNet  Google Scholar 

  17. Guest, S., Morris, J., Praeger, ChE, Spiga, P.: On the maximum orders of elements of finite almost simple groups and primitive permutation groups. Trans. Amer. Math. Soc. 367(11), 7665–7694 (2015)

    Article  MathSciNet  Google Scholar 

  18. Hering, Ch.: Transitive linear groups and linear groups which contain irreducible subgroups of prime order. Geom. Dedicata 2, 425–460 (1974)

    Article  MathSciNet  Google Scholar 

  19. Hiss, G., Zalesski, A.E.: The Weil–Steinberg character of finite classical groups. Represent. Theory 13, 427–459 (2009)

    Article  MathSciNet  Google Scholar 

  20. Humphreys, J.E.: The Steinberg representation. Bull. Amer. Math. Soc. (N.S.) 16(2), 247–263 (1987)

    Article  MathSciNet  Google Scholar 

  21. Humphreys, J.E.:Modular Representations of Finite Groups of Lie Type. London Mathematical Society Lecture Note Series, vol. 326. Cambridge University Press, Cambridge (2006)

  22. Jansen, C., Lux, K., Parker, R., Wilson, R.: An ATLAS of Brauer Characters. London Mathematical Society Monographs, vol. 11. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  23. Katz, N.M.: Galois properties of torsion points on abelian varieties. Invent. Math. 62(3), 481–502 (1981)

    Article  MathSciNet  Google Scholar 

  24. Kleshchev, A.S., Sheth, J.K.: Representations of the symmetric group are reducible over simply transitive subgroups. Math. Z. 235(1), 99–109 (2000)

    Article  MathSciNet  Google Scholar 

  25. Kondrat’ev, A.S., Osinovskaia, A.A., Suprunenko, I.D.: On the behavior of elements of prime order from Singer cycles in representations of special linear groups. Proc. Steklov Inst. Math. 285(Suppl 1), 108–115 (2014)

  26. Serre, J.-P.: Abelian \(\ell \)-Adic Representations and Elliptic Curves. Benjamin, New York (1968)

  27. Springer, T.A.: Characters of special groups. In: Borel, A., et al. (eds.) Seminar on Algebraic Groups and Related Finite Groups. Lecture Notes in Mathematics, vol. 131, pp. 121–166. Springer, Berlin (1970)

    Chapter  Google Scholar 

  28. Steinberg, R.: Lectures on Chevalley Groups. University Lecture Series, vol. 66. American Mathematical Society, Providence (2016)

    Book  Google Scholar 

  29. The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.11.1 (2021). https://www.gap-system.org

  30. Vincent, R., Zalesski, A.E.: Non-Hurwitz classical groups. LMS J. Comput. Math. 10, 21–82 (2007)

    Article  MathSciNet  Google Scholar 

  31. Zalesski, A.E.: Linear groups. Russian Math. Surveys 36(5), 63–128 (1981)

    Article  Google Scholar 

  32. Zalesski, A.E.: The eigenvalue \(1\) of matrices of complex representations of finite Chevalley groups. Proc. Steklov Inst. Math. 183(4), 109–119 (1991)

  33. Zalesski, A.E.: On eigenvalues of group elements in representations of simple algebraic groups and finite Chevalley groups. Acta Appl. Math. 108(1), 175–195 (2009)

    Article  MathSciNet  Google Scholar 

  34. Zalesski, A.E.: Invariants of maximal tori and unipotent constituents of some quasi-projective characters for finite classical groups. J. Algebra 500, 517–541 (2018)

    Article  MathSciNet  Google Scholar 

  35. Zalesski, A.E.: Singer cycles in 2-modular representations of \({\rm GL}_{n+1}(2)\). Archiv Math. (Basel) 110(5), 433–446 (2018)

    Article  MathSciNet  Google Scholar 

  36. Zalesski, A.E.: Abelian subgroups and semisimple elements in \(2\)-modular representations of the symplectic group \({{\rm Sp}}_{2n}(2)\) (2020). arXiv:2004.01287

Download references

Acknowledgements

We would like to thank Günter Malle for helpful correspondence and the anonymous referee for a detailed report which aided in the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Cullinan.

Additional information

Dedicated to the memory of James Humphreys

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cullinan, J., Zalesski, A. Unisingular representations in arithmetic and Lie theory. European Journal of Mathematics 7, 1645–1667 (2021). https://doi.org/10.1007/s40879-021-00496-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-021-00496-3

Keywords

Mathematics Subject Classification

Navigation