Skip to main content
Log in

Properly discontinuous group actions on affine homogeneous spaces

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Let G be a real algebraic group, HG an algebraic subgroup containing a maximal reductive subgroup of G, and Γ a subgroup of G acting on G/H by left translations. We conjecture that Γ is virtually solvable provided its action on G/H is properly discontinuous and ΓG/H is compact, and we confirm this conjecture when G does not contain simple algebraic subgroups of rank ≥2. If the action of Γ on G/H (which is isomorphic to an affine linear space A n) is linear, our conjecture coincides with the Auslander conjecture. We prove the Auslander conjecture for n ≤ 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Abels, G. A. Margulis, and G. A. Soifer, “Semigroups containing proximal linear maps,” Isr. J. Math. 91, 1–30 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Abels, G. A. Margulis, and G. A. Soifer, “On the Zariski closure of the linear part of a properly discontinuous group of affine transformations,” J. Diff. Geom. 60, 315–344 (2002).

    MathSciNet  MATH  Google Scholar 

  3. H. Abels, G. A. Margulis, and G. A. Soifer, “The linear part of an affine group acting properly discontinuously and leaving a quadratic form invariant,” Geom. Dedicata 153, 1–46 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Abels, G. A. Margulis, and G. A. Soifer, “The Auslander’s conjecture for dimension less than 7,” arXiv: 1211.2525v4 [math.GR].

  5. L. Auslander, “The structure of complete locally affine manifolds,” Topology 3 (Suppl. 1), 131–139 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Benoist, “Actions propres sur les espaces homogènes réductifs,” Ann. Math., Ser. 2, 144, 315–347 (1996).

    Article  MathSciNet  Google Scholar 

  7. Y. Benoist, “Propriétés asymptotic des groupes linéaires,” Geom. Funct. Anal. 7, 1–47 (1997).

    Article  MathSciNet  Google Scholar 

  8. Y. Benoist and F. Labourie, “Sur les difféomorphismes d’Anosov affines a feuilletages stable et instable différentiables,” Invent. Math. 111, 285–308 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Birkes, “Orbits of linear algebraic groups,” Ann. Math., Ser. 2, 93, 459–475 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Borel and T. A. Springer, “Rationality properties of linear algebraic groups. II,” Thoku Math. J., Ser. 2, 20, 443–497 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Bourbaki, Groupes et algèbres de Lie. Chapitres VII, VIII (Hermann, Paris, 1975), éléments de mathématique, Fasc. 38.

    MATH  Google Scholar 

  12. K. Dekimpe and N. Petrosyan, “Crystallographic actions on contractible algebraic manifolds,” Trans. Am. Math. Soc. 367, 2765–2786 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. T. A. Drumm, “Fundamental polyhedra for Margulis space-times,” Topology 31, 677–683 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  14. T. A. Drumm, “Linear holonomy of Margulis space-times,” J. Diff. Geom. 38, 679–690 (1993).

    MathSciNet  MATH  Google Scholar 

  15. T. A. Drumm and W. M. Goldman, “Complete flat Lorentz 3-manifolds with free fundamental group,” Int. J. Math. 1, 149–161 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Fried and W. M. Goldman, “Three-dimensional affine crystallographic groups,” Adv. Math. 47, 1–49 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  17. W. M. Goldman and M. W. Hirsch, “Affine manifolds and orbits of algebraic groups,” Trans. Am. Math. Soc. 295, 175–198 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  18. W. M. Goldman and Y. Kamishima, “The fundamental group of a compact flat space form is virtually polycyclic,” J. Diff. Geom. 19, 233–240 (1984).

    MathSciNet  MATH  Google Scholar 

  19. F. Grunewald and G. Margulis, “Transitive and quasitransitive actions of affine groups preserving a generalized Lorentz-structure,” J. Geom. Phys. 5, 493–531 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic, New York, 1978).

    MATH  Google Scholar 

  21. T. Kobayashi, “Discontinuous groups acting on homogeneous spaces of reductive type,” in Representation Theory of Lie Groups and Lie Algebras: Proc. Conf., Fuji Kawaguchiko, Japan, 1990 (World Sci., Hackensack, NJ, 1992), pp. 59–75.

    Google Scholar 

  22. T. Kobayashi, “A necessary condition for the existence of compact Clifford–Klein forms of homogeneous spaces of reductive type,” Duke Math. J. 67, 653–664 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Kobayashi, “Discontinuous groups and Clifford–Klein forms of pseudo-Riemannian homogeneous manifolds,” in Algebraic and Analytic Methods in Representation Theory, Ed. by B. Ørsted and H. Schlichtkrull (Academic, San Diego, CA, 1997), Perspect. Math. 17, pp. 99–165.

    Chapter  Google Scholar 

  24. R. L. Lipsman, “Proper actions and a compactness condition,” J. Lie Theory 5, 25–39 (1995).

    MathSciNet  MATH  Google Scholar 

  25. G. A. Margulis, “Free completely discontinuous groups of affine transformations,” Dokl. Akad. Nauk SSSR 272 (4), 785–788 (1983) [Sov. Math., Dokl. 28 (2), 435–439 (1983)].

    MathSciNet  Google Scholar 

  26. G. A. Margulis, “Complete affine locally flat manifolds with a free fundamental group,” Zap. Nauchn. Semin. LOMI 134, 190–205 (1984) [J. Sov. Math. 36, 129–139 (1987)].

    MathSciNet  MATH  Google Scholar 

  27. G. A. Margulis, “On the Zariski closure of the linear part of a properly discontinuous group of affine transformations,” Preprint (Princeton Univ., 1991).

    Google Scholar 

  28. J. Milnor, “On fundamental groups of complete affinely flat manifolds,” Adv. Math. 25, 178–187 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Prasad, “R-regular elements in Zariski dense subgroups,” Q. J. Math. 45, 541–545 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  30. M. S. Raghunathan, Discrete Subgroups of Lie Groups (Springer, Berlin, 1972), Ergeb. Math. Grenzgeb. 68.

    Book  MATH  Google Scholar 

  31. M. Rosenlicht, “On quotient varieties and the affine embedding of certain homogeneous spaces,” Trans. Am. Math. Soc. 101, 221–223 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Selberg, “On discontinuous groups in higher-dimensional symmetric spaces,” in Contributions to Function Theory (Tata Inst. Fundam. Res., Bombay, 1960), pp. 147–164.

    Google Scholar 

  33. J.-P. Serre, “Cohomologie des groupes discrets,” in Prospects in Mathematics (Princeton Univ. Press, Princeton, NJ, 1971), Ann. Math. Stud. 70, pp. 77–169.

    Google Scholar 

  34. G. A. Soifer, “Affine crystallographic groups,” in Proc. Third Siberian School on Algebra and Analysis, Irkutsk, 1989, Ed. by L. A. Bokut’, M. Hazewinkel, and Yu. G. Reshetnyak (Am. Math. Soc., Providence, RI, 1995), Am. Math. Soc. Transl., Ser. 2, 163, pp. 165–170.

    Google Scholar 

  35. J. Tits, “Free subgroups in linear groups,” J. Algebra 20, 250–270 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Tomanov, “The virtual solvability of the fundamental group of a generalized Lorentz space form,” J. Diff. Geom. 32, 539–547 (1990).

    MathSciNet  MATH  Google Scholar 

  37. G. M. Tomanov, “On a conjecture of L. Auslander,” C. R. Acad. Bulg Sci. 43 (2), 9–12 (1990).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Tomanov.

Additional information

Dedicated to V.P. Platonov on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomanov, G. Properly discontinuous group actions on affine homogeneous spaces. Proc. Steklov Inst. Math. 292, 260–271 (2016). https://doi.org/10.1134/S008154381601017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154381601017X

Keywords

Navigation