Skip to main content
Log in

Generic uniqueness of expanders with vanishing relative entropy

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We define a relative entropy for two self-similarly expanding solutions to mean curvature flow of hypersurfaces, asymptotic to the same cone at infinity. Adapting work of White (Indiana Univ Math J 36(3):567–602, 1987) and using recent results of Bernstein (Asymptotic structure of almost eigenfunctions of drift laplacians on conical ends) and Bernstein-Wang (The space of asymptotically conical self-expanders of mean curvature flow), we show that expanders with vanishing relative entropy are unique in a generic sense. This also implies that generically locally entropy minimising expanders are unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angenent, S., Ilmanen, T., Chopp, D.L.: A computed example of nonuniqueness of mean curvature flow in \({ R}^3\). Commun. Partial Diff. Equ. 20(11–12), 1937–1958 (1995)

    Article  Google Scholar 

  2. Bernstein, J.: Asymptotic structure of almost eigenfunctions of drift laplacians on conical ends, Preprint. arXiv:1708.07085v2

  3. Bernstein, J., Wang, L.: The space of asymptotically conical self-expanders of mean curvature flow, Preprint. arXiv:1712.04366

  4. Ding, Q.: Minimal cones and self-expanding solutions for mean curvature flow, Preprint. arXiv:1503.02612v2

  5. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Springer-Verlag, Berlin (2001)

    Book  Google Scholar 

  6. Hörmander, L.: The boundary problems of physical geodesy. Arch. Rational Mech. Anal. 62(1), 1–52 (1976)

    Article  MathSciNet  Google Scholar 

  7. Ilmanen, T.: Lectures on Mean Curvature Flow and Related Equations, preliminary version, available under http://www.math.ethz.ch/~ilmanen/papers/notes.ps

  8. Ilmanen, T., Neves, A., Schulze, F.: On short time existence for the planar network flow, Preprint. arXiv:1407.4756, to appear. J. Diff. Geom

  9. Simon, L.: Lectures on geometric measure theory. Centre for Mathematical Analysis. Australian National Unversity, Canberra (1983)

    Google Scholar 

  10. Wang, Lu: Uniqueness of self-similar shrinkers with asymptotically conical ends. J. Am. Math. Soc. 27(3), 613–638 (2014)

    Article  MathSciNet  Google Scholar 

  11. White, Brian: The space of \(m\)-dimensional surfaces that are stationary for a parametric elliptic functional. Indiana Univ. Math. J. 36(3), 567–602 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Tom Ilmanen for sharing his ideas. A.D. was supported by the grant ANR-17-CE40-0034 of the French National Research Agency ANR (project CCEM). F.S. was supported by a Leverhulme Trust Research Project Grant RPG-2016-174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alix Deruelle.

Additional information

Communicated by F.C. Marques.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Geometry of normal graphs

Let again \(\Sigma _0,\Sigma _1\) be two expanders asymptotic to the cone \(C(\Gamma )\), and assume \( {\bar{E}}_{1,R_0} = \text {graph}_{{\bar{E}}_{0,R_0}}(u)\) with \(u : {\bar{E}}_{0,R_0} \rightarrow {\mathbb {R}}\). Let \(p \in \Sigma _0\) and choose a local parametrisation F, parametrising an open neighbourhood U of p in \(\Sigma _0\) such that \(F(0)=p\). We can assume that \( g_{ij}=\langle \partial _i F, \partial _j F \rangle \) satisfies

$$\begin{aligned} g_{ij}\big |_{x=0} = \delta _{ij} \text { and } \partial _kg_{ij}|_{x=0} = 0\, . \end{aligned}$$

For simplicity we can furthermore assume that the second fundamental form \((h_{ij})\) is diagonalised at p with eigenvalues \(\lambda _1,\ldots , \lambda _n\). A direct calculation, see [10, (2.27)], yields that the normal vector \(\nu _1(q)\), where \(q = p + u(p) \nu _0(q)\), is co-linear to the vector

$$\begin{aligned} N = - \sum _{i=1}^n \frac{\partial _i u}{1 - \lambda _i u} \partial _iF\bigg |_{x=0} + \nu _0(p)\ . \end{aligned}$$

Denoting the shape operator \(S = (h^i_{\ j})\) we see that thus in coordinate free notation

$$\begin{aligned} \nu _1(q) = v^{-1} \left( - (\text {Id} - uS)^{-1}\nabla _{\Sigma _0} u + \nu _0\right) (p)\, , \end{aligned}$$
(62)

where \(v:=(1 + |(\text {Id} - uS)^{-1}(\nabla _{\Sigma _0} u)|^2)^{\frac{1}{2}}\). This implies

$$\begin{aligned} \langle q, \nu _1(q) \rangle = v^{-1} \left( u + \langle p, \nu _0(p) \rangle - \big \langle p, (\text {Id} - uS)^{-1}\nabla _{\Sigma _0} u \big \rangle \right) \, . \end{aligned}$$
(63)

For the induced metric \({{\tilde{g}}}\) one obtains in the above coordinates at p, again see [10, (2.32)],

$$\begin{aligned} {{\tilde{g}}}_{ij} = (1-\lambda _iu)(1-\lambda _ju) \delta _{ij} + \partial _i u \partial _j u \end{aligned}$$
(64)

which implies

$$\begin{aligned} {{\tilde{g}}}^{ij} = \frac{\delta ^{ij}}{(1-\lambda _i u)(1-\lambda _j u)} - v^{-2}\frac{\partial _i u}{(1-\lambda _i u)^2}\frac{\partial _j u}{(1-\lambda _j u)^2}\, . \end{aligned}$$
(65)

Furthermore, from [10, (2.30)] we have

$$\begin{aligned} {{\tilde{h}}}_{ij}= & {} \langle \partial ^2_{ij} {{\tilde{F}}}, \nu _N \rangle \nonumber \\= & {} v^{-1} \Big ( \frac{\lambda _i}{1-\lambda _i u} \partial _i u \partial _ju + \frac{\lambda _j}{1-\lambda _j u} \partial _i u \partial _ju\nonumber \\&+ \sum _k \frac{u}{1-\lambda _k u}\, \partial _k u \,\partial _i h_{jk} + h_{ij} - \lambda _i\lambda _j u\, \delta _{ij} + \partial ^2_{ij} u\Big )\, . \end{aligned}$$
(66)

Since \(H_{\Sigma _1}(p) = {{\tilde{g}}}^{ij}(p) {{\tilde{h}}}_{ij}(p)\) we see that

$$\begin{aligned} H_{\Sigma _1}(p)= & {} \Delta _{\Sigma _0} u + u |A_{\Sigma _0}|^2 + H_{\Sigma _0}(q) + Q(x,u,\nabla ^{\Sigma _0} u , \nabla _{\Sigma _0}^2 u)\, , \end{aligned}$$
(67)

where \(Q(x,u,\nabla ^{\Sigma _0} u , \nabla _{\Sigma _0}^2 u)\) is quadratic in \(u, \nabla ^{\Sigma _0} u, \nabla _{\Sigma _0}^2u\).

Appendix B. Interpolation inequalities

We recall the following standard interpolation inequalities in multiplicative form.

Lemma B.1

Suppose that \(u \in C^{k}(B_{2})\), then for \(j< k\),

$$\begin{aligned} \Vert D^{j} u \Vert _{C^{0}(B_{1})} \le C \Vert u\Vert _{C^{0}(B_{2})}^{1-\frac{j}{k}} \Vert D^{k} u \Vert _{C^{0}(B_{2})}^{\frac{j}{k}} \end{aligned}$$

for \(C=C(n,k)\). Similarly, if \(u \in C^{k,\alpha }(B_{2})\), then for \(j+\beta < k+\alpha \),

$$\begin{aligned} {[ D^{j} u ]}_{\beta ;B_{1}} \le C \Vert u\Vert _{C^{0}(B_{2})}^{1-\frac{j+\beta }{k+\alpha }} [ D^{k} u ]_{\alpha ; B_{2}}^{\frac{j+\beta }{k+\alpha }} \end{aligned}$$

for \(C=C(n,k,\alpha ,\beta )\).

These follow in a similar manner to the linear inequalities given in [5, Lemma 6.32], except in the proof one should optimize with respect to the parameter \(\mu \) rather than just choosing \(\mu \) sufficiently small. Alternatively, see [6, Lemma A.2].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deruelle, A., Schulze, F. Generic uniqueness of expanders with vanishing relative entropy. Math. Ann. 377, 1095–1127 (2020). https://doi.org/10.1007/s00208-020-02004-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02004-6

Navigation