Skip to main content
Log in

Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we prove necessary and sufficient conditions for the Kobayashi metric on a convex domain to be Gromov hyperbolic. In particular we show that for convex domains with \(C^\infty \) boundary being of finite type in the sense of D’Angelo is equivalent to the Gromov hyperbolicity of the Kobayashi metric. We also show that bounded domains which are locally convexifiable and have finite type in the sense of D’Angelo have Gromov hyperbolic Kobayashi metric. The proofs use ideas from the theory of the Hilbert metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, M.: Iteration theory of holomorphic maps on taut manifolds. Research and Lecture Notes in Mathematics. Complex Analysis and Geometry. Mediterranean Press, Rende (1989)

  2. Barth, T.J.: Convex domains and Kobayashi hyperbolicity. Proc. Am. Math. Soc. 79(4), 556–558 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balogh, Z.M., Bonk, M.: Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains. Comment. Math. Helv. 75(3), 504–533 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benoist, Y.: Convexes hyperboliques et fonctions quasisymétriques. Publ. Math. Inst. Hautes Études Sci. 97, 181–237 (2003)

    Article  MathSciNet  Google Scholar 

  5. Benoist, Y.: A survey on divisible convex sets. In: Geometry, Analysis and Topology of Discrete Groups, Adv. Lect. Math. (ALM), vol. 6, pp. 1–18. Int. Press, Somerville (2008)

  6. Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999)

  7. Bedford, E., Pinchuk, S.I.: Convex domains with noncompact groups of automorphisms. Mat. Sb. 185(5), 3–26 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Boas, H.P., Straube, E.J.: On equality of line type and variety type of real hypersurfaces in \({ C}^n\). J. Geom. Anal. 2(2), 95–98 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buyalo, S., Schroeder, V.: Elements of Asymptotic Geometry, EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich (2007)

  10. Bracci, F., Saracco, A.: Hyperbolicity in unbounded convex domains. Forum Math. 21(5), 815–825 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Catlin, D.: Boundary invariants of pseudoconvex domains. Ann. Math. (2) 120(3), 529–586 (1984)

  12. Chang, C.-H., Hu, M.C., Lee, H.-P.: Extremal analytic discs with prescribed boundary data. Trans. Am. Math. Soc. 310(1), 355–369 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Forstnerič, F., Rosay, J.-P.: Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings. Math. Ann. 279(2), 239–252 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frankel, S.: Affine approach to complex geometry. In: Recent Developments in Geometry (Los Angeles, CA, 1987), Contemp. Math., vol. 101, pp. 263–286. Amer. Math. Soc., Providence (1989)

  15. Frankel, S.: Complex geometry of convex domains that cover varieties. Acta Math. 163(1–2), 109–149 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frankel, S.: Applications of affine geometry to geometric function theory in several complex variables. I. Convergent rescalings and intrinsic quasi-isometric structure. In: Several Complex Variables and Complex Geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, pp. 183–208. Amer. Math. Soc., Providence (1991)

  17. Siqi, F., Straube, E.J.: Compactness of the \(\overline{\partial }\)-Neumann problem on convex domains. J. Funct. Anal. 159(2), 629–641 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gaussier, H.: Characterization of convex domains with noncompact automorphism group. Mich. Math. J. 44(2), 375–388 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goldman, W.: Projective geometry on manifolds. http://www.math.umd.edu/~wmg/pgom.pdf (2009). Accessed 11 Aug 2015

  20. Graham, I.: Sharp constants for the Koebe theorem and for estimates of intrinsic metrics on convex domains. In: Several Complex Variables and Complex Geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, pp. 233–238. Amer. Math. Soc., Providence (1991)

  21. Gaussier, H., Seshadri, H.: On the Gromov hyperbolicity of convex domains in \({\mathbb{C}}^{n}\) (ArXiv e-prints) (2013)

  22. Hefer, T.: Hölder and \(L^p\) estimates for \(\overline{\partial }\) on convex domains of finite type depending on Catlin’s multitype. Math. Z. 242(2), 367–398 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ivanov, N.V.: A short proof of non-Gromov hyperbolicity of Teichmüller spaces. Ann. Acad. Sci. Fenn. Math. 27(1), 3–5 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Kim, K.-T., Krantz, S.G.: Complex scaling and geometric analysis of several variables. Bull. Korean Math. Soc. 45(3), 523–561 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Karlsson, A., Noskov, G.A.: The Hilbert metric and Gromov hyperbolicity. Enseign. Math. (2) 48(1–2), 73–89 (2002)

  26. Kobayashi, S.: Intrinsic distances associated with flat affine or projective structures. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(1), 129–135 (1977)

  27. Kobayashi, S.: Hyperbolic Manifolds and Holomorphic Mappings. An Introduction, 2nd edn (2005)

  28. Lempert, L.: Complex geometry in convex domains. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Berkeley, Calif., 1986), pp. 759–765. Amer. Math. Soc., Providence (1987)

  29. McNeal, J.D.: Convex domains of finite type. J. Funct. Anal. 108(2), 361–373 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. McNeal, J.D.: Estimates on the Bergman kernels of convex domains. Adv. Math. 109(1), 108–139 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mercer, P.R.: Complex geodesics and iterates of holomorphic maps on convex domains in \({ C}^n\). Trans. Am. Math. Soc. 338(1), 201–211 (1993)

    MathSciNet  MATH  Google Scholar 

  32. Nikolov, N., Pflug, P., Thomas, P.J.: On different extremal bases for \({\mathbb{C}}\)-convex domains. Proc. Am. Math. Soc. 141(9), 3223–3230 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nikolov, N., Trybula, M.: The Kobayashi balls of (\({\mathbb{C}}\)-)convex domains. Monatsh. Math., 1–9 (2015)

  34. Nikolov, N., Thomas, P.J., Trybula, M.: Gromov (non)hyperbolicity of certain domains in \({\mathbb{C}}^{2}\). Forum Math. (2015, to appear)

  35. Pinchuk, S.: The scaling method and holomorphic mappings. In: Several Complex Variables and Complex Geometry, Part 1 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, pp. 151–161. Amer. Math. Soc., Providence (1991)

  36. Royden, H.L., Wong, P.M.: Carathéodory and Kobayashi metrics on convex domains (1983)

  37. Yu, J.Y.: Multitypes of convex domains. Indiana Univ. Math. J. 41(3), 837–849 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank my advisor Ralf Spatzier for many helpful conversations and also Yves Benoist for explaining to me some of the motivation behind his work on the Hilbert metric. This material is based upon work supported by the National Science Foundation under Grant Number NSF 1045119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Zimmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmer, A.M. Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type. Math. Ann. 365, 1425–1498 (2016). https://doi.org/10.1007/s00208-015-1278-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1278-9

Mathematics Subject Classification

Navigation