Skip to main content

Gromov Hyperbolicity of Bounded Convex Domains

  • Chapter
  • First Online:
Metrical and Dynamical Aspects in Complex Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2195))

Abstract

In this chapter we describe some results on Gromov hyperbolicity in several complex variables. In particular, we prove that the Kobayashi metric on a smoothly bounded convex domain is Gromov hyperbolic if and only if the domain has finite type and we provide a proof that the Kobayashi metric is Gromov hyperbolic on a strongly pseudoconvex domain. We will also describe connections between the Kobayashi metric and Hilbert metric and then describe recent work of Benoist concerning the Gromov hyperbolicity of the Hilbert metric. Finally, we list a number of open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abate, M.: Iteration theory of holomorphic maps on taut manifolds. Mediterranean Press, Cosenza (1989) [See also http://www.dm.unipi.it/~abate/libri/libriric/libriric.html]

  2. Abate, M., Tauraso, R.: The Lindelöf principle and angular derivatives in convex domains of finite type. J. Aust. Math. Soc. 73, 221–250 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balogh, Z., Bonk, M.: Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains. Comment. Math. Helv. 75, 504–533 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barth, T.J.: Convex domains and Kobayashi hyperbolicity. Proc. Am. Math. Soc. 79, 556–558 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bedford, E., Pinchuk, S.I.: Domains in C 2 with noncompact groups of holomorphic automorphisms. Mat. Sb. (N.S.) 135(177), 147–157, 271 (1988)

    Google Scholar 

  6. Bedford, E., Pinchuk, S.I.: Convex domains with noncompact groups of automorphisms. Mat. Sb. 185, 3–26 (1994)

    MATH  Google Scholar 

  7. Bedford, E., Pinchuk, S.: Domains in C 2 with noncompact automorphism groups. Indiana Univ. Math. J. 47, 199–222 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Benoist, Y.: Automorphismes des cônes convexes. Invent. Math. 141, 149–193 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Benoist, Y.: Convexes hyperboliques et fonctions quasisymétriques. Publ. Math. Inst. Hautes Études Sci. 97, 181–237 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Benoist, Y.: A survey on divisible convex sets. In: Geometry, Analysis and Topology of Discrete Groups. Advanced Lectures in Mathematics, vol. 6, pp. 1–18. International Press, Somerville, MA (2008)

    Google Scholar 

  11. Benzécri, J.-P.: Sur les variétés localement affines et localement projectives. Bull. Soc. Math. France 88, 229–332 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bertrand, F.: Sharp estimates of the Kobayashi metric and Gromov hyperbolicity. J. Math. Anal. Appl. 345, 825–844 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bertrand, F., Gaussier, H.: Gromov hyperbolicity of strongly pseudoconvex almost complex manifolds. Proc. Am. Math. Soc. 143, 3901–3913 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bharali, G.: Complex geodesics, their boundary regularity, and a Hardy–Littlewood-type lemma. Ann. Acad. Sci. Fenn. Math. 41(1), 253–263 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bharali, G., Zimmer, A.: Goldilocks domains, a weak notion of visibility, and applications. Adv. Math. 310, 377–425 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  16. Blanc-Centi, L.: On the Gromov hyperbolicity of the Kobayashi metric on strictly pseudoconvex regions in the almost complex case. Math. Z. 263, 481–498 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Boas, H.P., Straube, E.J.: On equality of line type and variety type of real hypersurfaces in C n. J. Geom. Anal. 2, 95–98 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  19. Buyalo, S., Schroeder, V.: Elements of Asymptotic Geometry. EMS Monographs in Mathematics. European Mathematical Society, Zürich (2007)

    Book  MATH  Google Scholar 

  20. Chang, C.-H., Hu, M.-C., Lee, H.-P.: Extremal analytic discs with prescribed boundary data. Trans. Am. Math. Soc. 310, 355–369 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Eberlein, P.: Isometry groups of simply connected manifolds of nonpositive curvature. Acta Math. 149, 41–69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Farb, B., Weinberger, S.: Isometries, rigidity and universal covers. Ann. Math. 168, 915–940 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Forstneric, F., Rosay, J.-P.: Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings. Math. Ann. 279, 239–252 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Frankel, S.: Affine approach to complex geometry. In: Recent Developments in Geometry (Los Angeles, CA, 1987), vol. 101, pp.263–286. Contemporary Mathematics. American Mathematical Society, Providence, RI (1989)

    Google Scholar 

  25. Frankel, S.: Complex geometry of convex domains that cover varieties. Acta Math. 163, 109–149 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Frankel, S.: Applications of affine geometry to geometric function theory in several complex variables. In: Several Complex Variables and Complex Geometry, pp. 183–208. Proceedings of Symposia in Pure Mathematics (Santa Cruz, CA, 1989), vol. 52. American Mathematical Society, Providence, RI (1991)

    Google Scholar 

  27. Frankel, S.: Locally symmetric and rigid factors for complex manifolds via harmonic maps. Ann. Math. 141, 285–300 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Fu, S., Straube, E.J.: Compactness of the \(\overline{\partial }\)-Neumann problem on convex domains. J. Funct. Anal. 159, 629–641 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gaussier, H.: Characterization of convex domains with noncompact automorphism group. Mich. Math. J. 44, 375–388 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gaussier, H., Seshadri, H.: Totally geodesic discs in strongly convex domains. Math. Z. 274, 185–197 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gaussier, H., Seshadri, H.: On the Gromov hyperbolicity of convex domains in \(\mathbb{C}^{n}\). Preprint, arXiv:1312.0368 (2013)

    Google Scholar 

  32. Goldman, W.M.: Convex real projective structures on compact surfaces. J. Differ. Geom. 31, 791–845 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  33. Graham, I.: Sharp constants for the Koebe theorem and for estimates of intrinsic metrics on convex domains. In: Several Complex Variables and Complex Geometry. Proceedings of Symposia in Pure Mathematics (Santa Cruz, CA, 1989), vol. 52, pp. 233–238. American Mathematical Society, Providence, RI (1991)

    Google Scholar 

  34. Gromov, M., Thurston, W.: Pinching constants for hyperbolic manifolds. Invent. Math. 89, 1–12 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  35. Isaev, A.V., Krantz, S.G.: Domains with non-compact automorphism group: a survey. Adv. Math. 146, 1–38 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  36. Johnson, D., Millson, J.J.: Deformation spaces associated to compact hyperbolic manifolds. In: Discrete Groups in Geometry and Analysis (New Haven, Conn., 1984). Progress in Mathematics, vol. 67, pp. 48–106. Birkhäuser, Boston (1987)

    Google Scholar 

  37. Kapovich, M.: Convex projective structures on Gromov-Thurston manifolds. Geom. Topol. 11, 1777–1830 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Karlsson, A.: On the dynamics of isometries. Geom. Topol. 9, 2359–2394 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Karlsson, A., Noskov, G.: The Hilbert metric and Gromov hyperbolicity. Enseign. Math. 48, 73–89 (2002)

    MATH  MathSciNet  Google Scholar 

  40. Kelly, P., Straus, E.: Curvature in Hilbert geometries. Pac. J. Math. 8, 119–125 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kim, K.-T.: On the automorphism groups of convex domains in \(\mathbb{C}^{n}\). Adv. Geom. 4, 33–40 (2004)

    Article  MathSciNet  Google Scholar 

  42. Kim, K.-T., Krantz, S.G.: Complex scaling and geometric analysis of several variables. Bull. Korean Math. Soc. 45, 523–561 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kobayashi, S.: Intrinsic distances associated with flat affine or projective structures. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 129–135 (1977)

    MATH  MathSciNet  Google Scholar 

  44. Koszul, J.-L.: Déformations de connexions localement plates. Ann. Inst. Fourier (Grenoble) 18, 103–114 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  45. Lempert, L.: Complex geometry in convex domains. In: Proceedings of the International Congress of Mathematicians, (Berkeley, California, 1986), vols. 1, 2, pp. 759–765. American Mathematical Society, Providence, RI (1987)

    Google Scholar 

  46. Marquis, L.: Around groups in Hilbert geometry. In: Handbook of Hilbert Geometry. IRMA Lectures in Mathematics and Theoretical Physics, vol. 22, pp. 207–261. European Mathematical Society, Zürich (2014)

    Google Scholar 

  47. McNeal, J.D.: Convex domains of finite type. J. Funct. Anal. 108, 361–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  48. Mercer, P.R.: Complex geodesics and iterates of holomorphic maps on convex domains in C n. Trans. Am. Math. Soc. 338, 201–211 (1993)

    MATH  MathSciNet  Google Scholar 

  49. Nadel, A.M.: Semisimplicity of the group of biholomorphisms of the universal covering of a compact complex manifold with ample canonical bundle. Ann. Math. 132, 193–211 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  50. Nikolov, N., Thomas, P.J., Trybula, M.: Gromov (non)hyperbolicity of certain domains in \(\mathbb{C}^{2}\). Forum Math. 28(4), 783–794 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  51. Papadopoulos, A., Troyanov, M. (eds.): Handbook of Hilbert Geometry. IRMA Lectures in Mathematics and Theoretical Physics, vol. 22. European Mathematical Society, Zürich (2014)

    Google Scholar 

  52. Pinchuk, S.: The scaling method and holomorphic mappings. In: Several Complex Variables and Complex Geometry. Proceedings of Symposia in Pure Mathematics (Santa Cruz, CA, 1989), vol. 52, pp. 151–161. American Mathematical Society, Providence, RI (1991)

    Google Scholar 

  53. Quint, J.-F.: Convexes divisibles (d’après Yves Benoist). Séminaire Bourbaki, Volume 2008/2009. Astérisque vol. 332 (2010)

    Google Scholar 

  54. Royden, H.L.: Remarks on the Kobayashi metric. In: Several Complex Variables. (Proceedings International Conference, University of Maryland, College Park, Md., 1970). Lecture Notes in Mathematics, vol. 185, pp. 125–137. Springer, Berlin (1971)

    Google Scholar 

  55. van Limbeek, W.: Riemannian manifolds with local symmetry. J. Topol. Anal. 6, 211–236 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  56. Venturini, S.: Pseudodistances and pseudometrics on real and complex manifolds. Ann. Mat. Pura Appl. (4) 154, 385–402 (1989)

    Google Scholar 

  57. Walsh, C.: Gauge-reversing maps on cones, and Hilbert and Thompson isometries. Preprint, arXiv:1312.7871 (2013)

    Google Scholar 

  58. Zhang, W., Ren, F.: Dynamics on weakly pseudoconvex domains. Chin. Ann. Math. Ser. B 16, 467–476 (1995). Chinese summary in Chinese Ann. Math. Ser. A 16 (1995)

    Google Scholar 

  59. Zimmer, A.: Gromov hyperbolicity, the Kobayashi metric, and \(\mathbb{C}\)-convex sets. Trans. Am. Math. Soc. (2017). http://dx.doi.org/10.1090/tran/6909

    MATH  Google Scholar 

  60. Zimmer, A.: Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type. Math. Ann. 365, 1425–1498 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  61. Zimmer, A.: Characterizing domains by the limit set of their automorphism group. Adv. Math. 308, 438–482 (2017)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant Number NSF 1400919.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Zimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zimmer, A. (2017). Gromov Hyperbolicity of Bounded Convex Domains. In: Blanc-Centi, L. (eds) Metrical and Dynamical Aspects in Complex Analysis. Lecture Notes in Mathematics, vol 2195. Springer, Cham. https://doi.org/10.1007/978-3-319-65837-7_4

Download citation

Publish with us

Policies and ethics