Skip to main content
Log in

The Calabi–Yau problem, null curves, and Bryant surfaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we prove that every bordered Riemann surface \(M\) admits a complete proper null holomorphic embedding into a ball of the complex Euclidean 3-space \(\mathbb {C}^3\). The real part of such an embedding is a complete conformal minimal immersion \(M\rightarrow \mathbb {R}^3\) with bounded image. For any such \(M\) we also construct proper null holomorphic embeddings \(M\hookrightarrow \mathbb {C}^3\) with a bounded coordinate function; these give rise to properly embedded null curves \(M\hookrightarrow SL_2(\mathbb {C})\) and to properly immersed Bryant surfaces \(M\rightarrow \mathbb {H}^3\) in the hyperbolic 3-space. In particular, we provide the first examples of proper Bryant surfaces with finite topology and of hyperbolic conformal type. The main novelty when compared to the existing results in the literature is that we work with a fixed conformal structure on \(M\). This is accomplished by introducing a conceptually new method based on complex analytic techniques. One of our main tools is an approximate solution to certain Riemann-Hilbert boundary value problems for null curves in \(\mathbb {C}^3\), developed in Sect. 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alarcón, A., Fernández, I.: Complete minimal surfaces in \({\mathbb{R}}^3\) with a prescribed coordinate function. Differ. Geom. Appl. 29(suppl. 1), S9–S15 (2011)

    Article  MATH  Google Scholar 

  2. Alarcón, A., Fernández, I., López, F.J.: Complete minimal surfaces and harmonic functions. Comment. Math. Helv. 87, 891–904 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alarcón, A., Fernández, I., López, F.J.: Harmonic mappings and conformal minimal immersions of Riemann surfaces into \({\mathbb{R}}^N\). Calc. Var. Partial Differ. Equs. 47, 227–242 (2013)

    Article  MATH  Google Scholar 

  4. Alarcón, A., Ferrer, L., Martín, F.: Density theorems for complete minimal surfaces in \({\mathbb{R}}^3\). Geom. Funct. Anal. 18, 1–49 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alarcón, A., Forstnerič, F.: Every bordered Riemann surface is a complete proper curve in a ball. Math. Ann. 357, 1049–1070 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alarcón, A., Forstnerič, F.: Null curves and directed immersions of open Riemann surfaces. Invent. Math. 196, 733–771 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Alarcón, A., López, F.J.: Minimal surfaces in \({\mathbb{R}}^3\) properly projecting into \({\mathbb{R}}^2\). J. Differ. Geom. 90, 351–382 (2012)

    MATH  Google Scholar 

  8. Alarcón, A., López, F.J.: Null curves in \({\mathbb{C}}^3\) and Calabi–Yau conjectures. Math. Ann. 355, 429–455 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Alarcón, A., López, F.J.: Compact complete null curves in complex \(3\)-space. Israel J. Math. 195, 97–122 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Alarcón, A., López, F.J.: Proper holomorphic embeddings of Riemann surfaces with arbitrary topology into \({\mathbb{C}}^2\). J. Geom. Anal. 23, 1794–1805 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Alarcón, A., López, F.J.: Properness of associated minimal surfaces. Trans. Am. Math. Soc. 366, 5139–5154 (2014)

    Article  MATH  Google Scholar 

  12. Alarcón, A.; López, F.J.: A complete bounded embedded complex curve in \({\mathbb{C}}^2\). J. Eur. Math. Soc. (JEMS). arXiv:1305.2118 (in press)

  13. Bryant, R.: Surfaces of mean curvature one in hyperbolic space. Théorie des variétés minimales et applications (Palaiseau, 1983–1984). Astérisque 154–155 (1987), 12, 321–347, 353 (1988)

  14. Calabi, E.: Problems in differential geometry. In: Kobayashi, S., Eells, Jr. J. (ed.)Proceedings of the United States–Japan Seminar in Differential Geometry, Kyoto, Japan, 1965. Nippon Hyoronsha Co., Ltd, Tokyo, p 170 (1966)

  15. Colding, T.H., Minicozzi II, W.P.: The Calabi–Yau conjectures for embedded surfaces. Ann. Math. 2(167), 211–243 (2008)

    Article  MathSciNet  Google Scholar 

  16. Collin, P., Hauswirth, L., Rosenberg, H.: The geometry of finite topology Bryant surfaces. Ann. Math. 2(153), 623–659 (2001)

    Article  MathSciNet  Google Scholar 

  17. Černe, M.: Nonlinear Riemann-Hilbert problem for bordered Riemann surfaces. Am. J. Math. 126, 65–87 (2004)

    Article  MATH  Google Scholar 

  18. Drinovec Drnovšek, B., Forstnerič, F.: Holomorphic curves in complex spaces. Duke Math. J. 139, 203–254 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Drinovec Drnovšek, B., Forstnerič, F.: Minimal hulls of compact sets in \({\mathbb{R}}^3\). Preprint (2014). arXiv:1409.6906

  20. Ferrer, L., Martín, F., Meeks III, W.H.: Existence of proper minimal surfaces of arbitrary topological type. Adv. Math. 231, 378–413 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ferrer, L., Martín, F., Umehara, M., Yamada, K.: A construction of a complete bounded null curve in \({\mathbb{C}}^3\). Kodai Math. J. 37, 59–96 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Forstnerič, F.: Manifolds of holomorphic mappings from strongly pseudoconvex domains. Asian J. Math. 11, 113–126 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Forstnerič, F.: Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis). Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 56. Springer, Berlin (2011)

    Google Scholar 

  24. Forstnerič, F., Globevnik, J.: Proper holomorphic discs in \({\mathbb{C}}^2\). Math. Res. Lett. 8, 257–274 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Forstnerič, F., Wold, E.F.: Bordered Riemann surfaces in \({\mathbb{C}}^2\). J. Math. Pures Appl. 9(91), 100–114 (2009)

    Article  Google Scholar 

  26. Forstnerič, F., Wold, E.F.: Embeddings of infinitely connected planar domains into \({\mathbb{C}}^2\). Anal. PDE 6, 499–514 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Globevnik, J.: A complete complex hypersurface in the ball of \({\mathbb{C}}^N\). Preprint (2014). arXiv:1401.3135

  28. Hoffman, D., Meeks III, W.H.: The strong halfspace theorem for minimal surfaces. Invent. Math. 101, 373–377 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jones, P.W.: A complete bounded complex submanifold of \({\mathbb{C}}^3\). Proc. Am. Math. Soc. 76, 305–306 (1979)

    MATH  Google Scholar 

  30. Jorge, L.P., Xavier, F.: A complete minimal surface in \({\mathbb{R}}^3\) between two parallel planes. Ann. Math. 2(112), 203–206 (1980)

    Article  MathSciNet  Google Scholar 

  31. Lawson, B.: Complete minimal surfaces in \(S^3\). Ann. Math. 2(92), 335–374 (1970)

    Article  Google Scholar 

  32. Martín, F.; Umehara, M.; Yamada, K.: Complete bounded null curves immersed in \({\mathbb{C}}^3\) and \(SL(2,{\mathbb{C}})\). Calc. Var. Partial Differential Equations 36, 119–139 (2009). Erratum: Complete bounded null curves immersed in \({\mathbb{C}}^3\) and \(SL(2,{\mathbb{C}})\). Calc. Var. Partial Differ. Equs. 46, 439–440 (2013)

  33. Martín, F., Umehara, M., Yamada, K.: Complete bounded holomorphic curves immersed in \({\mathbb{C}}^2\) with arbitrary genus. Proc. Am. Math. Soc. 137, 3437–3450 (2009)

    Article  MATH  Google Scholar 

  34. Meeks III, W.H: Global Problems in Classical Minimal Surface Theory. Global Theory of Minimal Surfaces. Clay Math. Proc. 2, Am. Math. Soc., Providence (2005)

  35. Meeks III, W.H., Pérez, J.: Ros, A.: The embedded Calabi–Yau conjectures for finite genus. http://www.ugr.es/~jperez/papers/papers.htm

  36. Morales, S.: On the existence of a proper minimal surface in \({\mathbb{R}}^3\) with a conformal type of disk. Geom. Funct. Anal. 13, 1281–1301 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Nadirashvili, N.: Hadamard’s and Calabi–Yau’s conjectures on negatively curved and minimal surfaces. Invent. Math. 126, 457–465 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Osserman, R.: A Survey of Minimal Surfaces, 2nd edn. Dover Publications Inc, New York (1986)

    Google Scholar 

  39. Rosenberg, H.: Bryant surfaces. In: The global theory of minimal surfaces in flat spaces (Martina Franca, 1999), pp. 67–111. Lecture Notes in Math., 1775, Springer, Berlin (2002)

  40. Umehara, M., Yamada, K.: Complete surfaces of constant mean curvature \(1\) in the hyperbolic \(3\)-space. Ann. Math. 2(137), 611–638 (1993)

    Article  MathSciNet  Google Scholar 

  41. Yang, P.: Curvatures of complex submanifolds of \({\mathbb{C}}^n\). J. Differ. Geom. 12, 499–511 (1977)

    MATH  Google Scholar 

  42. Yang, P.: Curvature of Complex Submanifolds of \({\mathbb{C}}^n\). Proc. Sympos. Pure Math., vol. 30, part 2, pp. 135–137. Amer. Math. Soc., Providence (1977)

  43. Yau, S.T.: Problem section, Seminar on Differential Geometry. Ann. of Math. Studies, vol. 102, pp. 669–706. Princeton University Press, Princeton (1982)

  44. Yau, S.T.: Review of geometry and analysis. Mathematics: frontiers and perspectives. pp. 353–401. Amer. Math. Soc., Providence, R.I. (2000)

Download references

Acknowledgments

We kindly thank the referee for the remarks which led to improved presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franc Forstnerič.

Additional information

A. Alarcón is supported by Vicerrectorado de Política Científica e Investigación de la Universidad de Granada, and is partially supported by MCYT-FEDER grants MTM2007-61775 and MTM2011-22547, Junta de Andalucía Grant P09-FQM-5088, and the grant PYR-2012-3 CEI BioTIC GENIL (CEB09-0010) of the MICINN CEI Program.

F. Forstnerič is supported by the program P1-0291 and the grant J1-5432, ARRS, Republic of Slovenia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alarcón, A., Forstnerič, F. The Calabi–Yau problem, null curves, and Bryant surfaces. Math. Ann. 363, 913–951 (2015). https://doi.org/10.1007/s00208-015-1189-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1189-9

Mathematics Subject Classification

Navigation