Skip to main content
Log in

Null curves in \({\mathbb{C}^3}\) and Calabi–Yau conjectures

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

For any open orientable surface M and convex domain \({\Omega\subset \mathbb{C}^3,}\) there exist a Riemann surface N homeomorphic to M and a complete proper null curve F : NΩ. This result follows from a general existence theorem with many applications. Among them, the followings:

  • For any convex domain Ω in \({\mathbb{C}^2}\) there exist a Riemann surface N homeomorphic to M and a complete proper holomorphic immersion F : NΩ. Furthermore, if \({D \subset \mathbb{R}^2}\) is a convex domain and Ω is the solid right cylinder \({\{x \in \mathbb{C}^2 \,|\, \mbox{Re}(x) \in D\},}\) then F can be chosen so that Re(F) : ND is proper.

  • There exist a Riemann surface N homeomorphic to M and a complete bounded holomorphic null immersion \({F:N \to {\rm SL}(2, \mathbb{C}).}\)

  • There exists a complete bounded CMC-1 immersion \({X:M \to \mathbb{H}^3.}\)

  • For any convex domain \({\Omega \subset \mathbb{R}^3}\) there exists a complete proper minimal immersion (X j ) j=1,2,3 : MΩ with vanishing flux. Furthermore, if \({D \subset \mathbb{R}^2}\) is a convex domain and \({\Omega=\{(x_j)_{j=1,2,3} \in \mathbb{R}^3 \,|\, (x_1,x_2) \in D\},}\) then X can be chosen so that (X 1, X 2) : MD is proper.

Any of the above surfaces can be chosen with hyperbolic conformal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alarcón, A., Fernández, I., López, F.J.: Complete minimal surfaces and harmonic functions. Comment. Math. Helv. (in press)

  2. Alarcón A., Ferrer L., Martín F.: Density theorems for complete minimal surfaces in \({\mathbb{R}^3}\) . Geom. Funct. Anal. 18, 1–49 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alarcón, A., López, F.J.: Minimal surfaces in \({\mathbb{R}^3}\) properly projecting into \({\mathbb{R}^3}\) . J. Differ. Geom. (in press)

  4. Bishop E.: Mappings of partially analytic spaces. Am. J. Math. 83, 209–242 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain J.: On the radial variation of bounded analytic functions on the disc. Duke Math. J. 69, 671–682 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bryant R.: Surfaces of mean curvature one in hyperbolic space. Théorie des variétés minimales et applications (Palaiseau, 1983–1984). Astérisque 154–155, 321–347 (1987)

    Google Scholar 

  7. Calabi, E.: Problems in differential geometry. In: Kobayashi, S., Ells, J. Jr. (eds.) Proceedings of the United States-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965. Nippon Hyoronsha Co. Ltd., Tokyo (1966)

  8. Colding T.H., Minicozzi W.P. II: The Calabi–Yau conjectures for embedded surfaces. Ann. Math. 167(2), 211–243 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferrer, L., Martín, F., Meeks, W.H. III: Existence of proper minimal surfaces of arbitrary topological type. Preprint (arXiv:0903.4194)

  10. Jones P.W.: A complete bounded complex submanifold of \({\mathbb{C}^3}\) . Proc. Am. Math. Soc. 76, 305–306 (1979)

    MATH  Google Scholar 

  11. Jorge L.P.M., Xavier F.: A complete minimal surface in \({\mathbb{R}^3}\) between two parallel planes. Ann. Math. 112(2), 203–206 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. López F.J., Martín F., Morales S.: Adding handles to Nadirashvili’s surfaces. J. Differ. Geom. 60, 155–175 (2002)

    MATH  Google Scholar 

  13. Martín F., Morales S.: Complete proper minimal surfaces in convex bodies of \({\mathbb{R}^3}\) . Duke Math. J. 128, 559–593 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martín F., Morales S.: Complete proper minimal surfaces in convex bodies of \({\mathbb{R}^3}\) II. The behavior of the limit set. Comment. Math. Helv. 81, 699–725 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Martín F., Umehara M., Yamada K.: Complete bounded null curves immersed in \({\mathbb{C}^3}\) and SL(2, \({\mathbb{C}}\)). Calc. Var. Partial Differ. Equ. 36, 119–139 (2009)

    Article  MATH  Google Scholar 

  16. Martín, F., Umehara, M., Yamada, K.: Erratum: Complete bounded null curves immersed in \({\mathbb{C}^3}\) and (2, \({\mathbb{C}}\)). (Preprint)

  17. Martín F., Umehara M., Yamada K.: Complete bounded holomorphic curves immersed in \({\mathbb{C}^2}\) with arbitrary genus. Proc. Am. Math. Soc. 137, 3437–3450 (2009)

    Article  MATH  Google Scholar 

  18. Meeks, W.H. III., Pérez, J., Ros, A.: The embedded Calabi–Yau conjectures for finite genus. (In preparation)

  19. Meeks W.H. III, Yau S.-T.: The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas Morrey and an analytic proof of Dehn’s lemma. Topology 21, 409–442 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Minkowski H.: Volumen und Oberfläche. Math. Ann. 57, 447–495 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nadirashvili N.: Hadamard’s and Calabi–Yau’s conjectures on negatively curved and minimal surfaces. Invent. Math. 126, 457–465 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Narasimhan R.: Imbedding of holomorphically complete complex spaces. Am. J. Math. 82, 917–934 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pacard F., Pimentel F.A.A.: Attaching handles to constant-mean-curvature-1 surfaces in hyperbolic 3-space. J. Inst. Math. Jussieu 3, 421–459 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Remmert R.: Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes. C. R. Acad. Sci. Paris 243, 118–121 (1956)

    MathSciNet  MATH  Google Scholar 

  25. Rossman W., Umehada M., Yamada K.: Mean curvature 1 surfaces in hyperbolic 3-space with low total curvature, I. Adv. Stud. Pure Math. 34, 245–253 (2002)

    Google Scholar 

  26. Schoen, R., Yau, S.T.: Lectures on harmonic maps. In: Conference Proceedings and Lecture Notes in Geometry and Topology, II. International Press, Cambridge (1997)

  27. Umehara M., Yamada K.: Complete surfaces of constant mean curvature 1 in the hyperbolic 3-space. Ann. Math. 137(2), 611–638 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yau, S.-T.: Problems section. Seminar on Differential Geometry. Ann. of Math. Stud., vol. 102, pp. 669–706. Princeton University Press, Princeton (1982)

  29. Yau, S.-T.: Review of Geometry and Analysis. Mathematics: Frontiers and Perspectives, pp. 353–401. Amer. Math. Soc., Providence (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. López.

Additional information

Research of both authors partially supported by MCYT-FEDER research projects MTM2007-61775 and MTM2011-22547 and Junta de Andalucía Grant P09-FQM-5088.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alarcón, A., López, F.J. Null curves in \({\mathbb{C}^3}\) and Calabi–Yau conjectures. Math. Ann. 355, 429–455 (2013). https://doi.org/10.1007/s00208-012-0790-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0790-4

Mathematics Subject Classification (2000)

Navigation