Skip to main content
Log in

On uniqueness of semi-wavefronts

Diekmann–Kaper theory of a nonlinear convolution equation re-visited

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Motivated by the uniqueness problem for monostable semi-wave-fronts, we propose a revised version of the Diekmann and Kaper theory of a nonlinear convolution equation. Our version of the Diekmann–Kaper theory allows (1) to consider new types of models which include nonlocal KPP type equations (with either symmetric or anisotropic dispersal), nonlocal lattice equations and delayed reaction–diffusion equations; (2) to incorporate the critical case (which corresponds to the slowest wavefronts) into the consideration; (3) to weaken or to remove various restrictions on kernels and nonlinearities. The results are compared with those of Schumacher (J Reine Angew Math 316: 54–70, 1980), Carr and Chmaj (Proc Am Math Soc 132: 2433–2439, 2004), and other more recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguerrea M., Trofimchuk S., Valenzuela G.: Uniqueness of fast travelling fronts in reaction–diffusion equations with delay. Proc. R. Soc. A 464, 2591–2608 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bates P., Fife P., Ren X., Wang X.: Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138, 105–136 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki H., Nirenberg L.: Traveling waves in cylinders. Ann. Inst. H. Poincare Anal. Non. Lineaire 9, 497–572 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Carr J., Chmaj A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc 132, 2433–2439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen X., Fu S.-C., Guo J.-S.: Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices. SIAM J. Math. Anal 38, 233–258 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Chen X., Guo J.-S.: Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann 326, 123–146 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Coville J.: On uniqueness and monotonicity of solutions of nonlocal reaction diffusion equation. Ann. Mat. Pura Appl 185, 461–485 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coville J., Dávila J., Martínez S.: Nonlocal anisotropic dispersal with monostable nonlinearity. J. Differ. Equ. 244, 3080–3118 (2008)

    Article  MATH  Google Scholar 

  9. Coville J., Dupaigne L.: On a non-local equation arising in population dynamics. Proc. Roy. Soc. Edinburgh Sect. A 137, 727–755 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diekmann, O.: On a nonlinear integral equation arising in mathematical epidemiology. In: Eckhaus, W., de Jager, E.M. (eds.) Differential Equations and Applications (Proc. Third Scheveningen Conf.), Scheveningen, 1977, pp. 133–140. North-Holland, Amsterdam (1978)

  11. Diekmann O.: Thresholds and travelling waves for the geographical spread of infection. J. Math. Biol 6, 109–130 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diekmann O., Kaper H.: On the bounded solutions of a nonlinear convolution equation. Nonlinear Anal. TMA 2, 721–737 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ebert U., van Saarloos W.: Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Phys. D 146, 1–99 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Engel K.-J., Nagel R.: One-parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)

    MATH  Google Scholar 

  15. Ermentrout G., McLeod J.: Existence and uniqueness of traveling waves for a neural network. Proc. Roy. Soc. Edinburg Sect. A 123, 461–478 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fang J., Wei J., Zhao X.-Q.: Uniqueness of traveling waves for nonlocal lattice equations. Proc. Amer. Math. Soc 139, 1361–1373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fang J., Zhao X.: Existence and uniqueness of traveling waves for non-monotone integral equations with applications. J. Differ. Equ. 248, 2199–2226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Faria T., Huang W., Wu J.: Traveling waves for delayed reaction–diffusion equations with non-local response. Proc. R. Soc. A 462, 229–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Faria T., Trofimchuk S.: Non-monotone traveling waves in a single species reaction–diffusion equation with delay. J. Differ. Equ. 228, 357–376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Faria T., Trofimchuk S.: Positive travelling fronts for reaction–diffusion systems with distributed delay. Nonlinearity 23, 2457–2481 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Garnier J.: Accelerating solutions in integro-differential equations. SIAM J. Math. Anal. 43, 1955–1974 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gilding B., Kersner R.: Travelling Waves in Nonlinear Diffusion–Convection Reaction. Birkhauser, Basel (2004)

    Book  MATH  Google Scholar 

  23. Gomez A., Trofimchuk S.: Monotone traveling wavefronts of the KPP-Fisher delayed equation. J. Differ. Equ. 250, 1767–1787 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gourley S., So J., Wu J.: Non-locality of reaction–diffusion equations induced by delay: biological modeling and nonlinear dynamics. J. Math. Sci. 124, 5119–5153 (2004)

    Article  MathSciNet  Google Scholar 

  25. Guo J.-S., Hamel F.: Front propagation for discrete periodic monostable equations. Math. Ann. 335, 489–525 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo J.-S., Wu C.-H.: Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system. Osaka J. Math 45, 327–346 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Hale J., Verduyn Lunel S.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  28. Kolmogorov A., Petrovskii I., Piskunov N.: Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem. Byul. Mosk. Gos. Univ. Ser. A Mat. Mekh 1, 1–26 (1937)

    Google Scholar 

  29. Ma S.: Traveling waves for non-local delayed diffusion equations via auxiliary equations. J. Differ. Equ. 237, 259–277 (2007)

    Article  MATH  Google Scholar 

  30. Ma S., Zou X.: Existence, uniqueness and stability of travelling waves in a discrete reaction–diffusion monostable equation with delay. J. Differ. Equ. 217, 54–87 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mallet-Paret J.: The Fredholm alternative for functional differential equations of mixed type. J. Dynam. Differ. Equ. 11, 1–48 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mei M., Lin C.-K., Lin C-T., So J.W.-H.: Traveling wavefronts for time-delayed reaction–diffusion equation, (II) nonlocal nonlinearity. J. Differ. Equ. 247, 511–529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schumacher K.: Travelling-front solutions for integro-differential equations. I. J. Reine Angew. Math. 316, 54–70 (1980)

    MathSciNet  MATH  Google Scholar 

  34. Stokes A.: On two types of moving front in quasilinear diffusion. Math. Biosci. 31, 307–315 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  35. Titchmarsh E.: Introduction to the Theory of Fourier Integrals. Chelsea, New York (1986)

    Google Scholar 

  36. Thieme H., Zhao X.-Q.: Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction–diffusion models. J. Differ. Equ. 195, 430–470 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Trofimchuk E., Tkachenko V., Trofimchuk S.: Slowly oscillating wave solutions of a single species reaction–diffusion equation with delay. J. Differ. Equ. 245, 2307–2332 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Trofimchuk E., Alvarado P., Trofimchuk S.: On the geometry of wave solutions of a delayed reaction–diffusion equation. J. Differ. Equ. 246, 1422–1444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang Z.-C., Li W.T., Ruan S.: Traveling fronts in monostable equations with nonlocal delayed effects. J. Dynam. Differ. Equ. 20, 573–607 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Widder D.: The Laplace Transform. Princeton University Press, Princeton (1941)

    Google Scholar 

  41. Yagisita H.: Existence and Nonexistence of Travelling Waves for a Nonlocal Monostable Equation, vol. 45, pp. 925–953. Publication of RIMS Kyoto University, Kyoto (2009)

    Google Scholar 

  42. Zinner B., Harris G., Hudson W.: Traveling wavefronts for the discrete Fisher’s equation. J. Differ. Equ. 105, 46–62 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Trofimchuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguerrea, M., Gomez, C. & Trofimchuk, S. On uniqueness of semi-wavefronts. Math. Ann. 354, 73–109 (2012). https://doi.org/10.1007/s00208-011-0722-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0722-8

Mathematics Subject Classification (2010)

Navigation