Skip to main content
Log in

A Kato-Type Criterion for Vanishing Viscosity Near Onsager’s Critical Regularity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider a vanishing viscosity sequence of weak solutions for the three-dimensional Navier–Stokes equations of incompressible fluids in a bounded domain. In a seminal paper (Kato in Seminar on nonlinear partial differential equations, Springer, New York, 1983), Kato showed that for sufficiently regular solutions, the vanishing viscosity limit is equivalent to having vanishing viscous dissipation in a boundary layer of width proportional to the viscosity. We prove that Kato’s criterion holds for the Hölder continuous solutions with the regularity index arbitrarily close to Onsager’s critical exponent through a new boundary layer foliation and a global mollification technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

This research does not have any associated data.

References

  1. Bardos, C., Titi, E.: Euler equations for an ideal incompressible fluid. Uspekhi Mat. Nauk 62, 375, 2007

    MathSciNet  MATH  Google Scholar 

  2. Bardos, C., Titi, E.S., Wiedemann, E.: Onsager’s conjecture with physical boundaries and an application to the vanishing viscosity limit. Commun. Math. Phys. 370, 291–310, 2019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bardos, C.W., Titi, E.S.: Mathematics and turbulence: where do we stand? J. Turbul. 14, 42–76, 2013

    Article  ADS  MathSciNet  Google Scholar 

  4. Buckmaster, T., De Lellis, C., Székelyhidi, L., Vicol, V.: Onsager’s conjecture for admissible weak solutions. Commun. Pure Appl. Math. 72, 229–274, 2019

    Article  MathSciNet  MATH  Google Scholar 

  5. Buckmaster, T., Vicol, V.: Convex integration and phenomenologies in turbulence. EMS Surv. Math. Sci. 6, 173–263, 2019

    Article  MathSciNet  MATH  Google Scholar 

  6. Cadot, O., Couder, Y., Daerr, A., Douady, S., Tsinober, A.: Energy injection in closed turbulent flows: Stirring through boundary layers versus inertial stirring. Phys. Rev. E 56, 427, 1997

    Article  ADS  Google Scholar 

  7. Caflisch, R., Sammartino, M.: Zero viscosity limit for analytic solutions of the Navier–Stokes equations on a half-space II: construction of the Navier-Stokes solution. Commun. Math. Phys. 192, 463–491, 1998

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chen, R.M., Liang, Z., Wang, D., Xu, R.: Energy equality in compressible fluids with physical boundaries. SIAM J. Math. Anal. 52, 1363–1385, 2020

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21, 1233–1252, 2008

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin, P., W. E, Titi, E. S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys., 165, 207–209 (1994)

  11. Constantin, P., Elgindi, T., Ignatova, M., Vicol, V.: Remarks on the inviscid limit for the Navier–Stokes equations for uniformly bounded velocity fields. SIAM J. Math. Anal. 49, 1932–1946, 2017

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, P., Kukavica, I., Vicol, V.: On the inviscid limit of the Navier–Stokes equations. Proc. Am. Math. Soc. 143, 3075–3090, 2015

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin, P., Lopes Filho, M. C., Lopes, H. J. N., Vicol, V.: Vorticity measures and the inviscid limit. Arch. Ration. Mech. Anal., 234, 575–593, 2019

  14. Constantin, P., Vicol, V.: Remarks on high Reynolds numbers hydrodynamics and the inviscid limit. J. Nonlinear Sci. 28, 711–724, 2018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. De Lellis, C., Székelyhidi, L.: Dissipative continuous Euler flows. Invent. Math. 193, 377–407, 2012

    Article  MathSciNet  MATH  Google Scholar 

  16. De Lellis, C., Székelyhidi, L., Jr.: Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. (JEMS) 16, 1467–1505, 2014

    Article  MathSciNet  MATH  Google Scholar 

  17. DiPerna, R.J., Majda, A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108, 667–689, 1987

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Drivas, T.D., Nguyen, H.Q.: Onsager’s conjecture and anomalous dissipation on domains with boundary. SIAM J. Math. Anal. 50, 4785–4811, 2018

    Article  MathSciNet  MATH  Google Scholar 

  19. Drivas, T. D., Nguyen, H. Q.: Remarks on the emergence of weak Euler solutions in the vanishing viscosity limit. J. Nonlinear Sci., 1–13, 2018

  20. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13, 249–255, 1999

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Escauriaza, L., Montaner, S.: Some remarks on the $L^p$ regularity of second derivatives of solutions to non-divergence elliptic equations and the Dini condition, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28, 49–63, 2017

    Article  MathSciNet  MATH  Google Scholar 

  22. Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Physica D 78, 222–240, 1994

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231, 1951

    Article  MathSciNet  MATH  Google Scholar 

  24. Isett, P.: On the endpoint regularity in Onsager’s conjecture. arXiv:1706.01549, 2017.

  25. Isett, P.: A proof of Onsager’s conjecture. Ann. Math. 188, 871, 2018

    Article  MathSciNet  MATH  Google Scholar 

  26. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary, in Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), vol. 2 of Math. Sci. Res. Inst. Publ. Springer, New York, pp. 85–98, 1984

  27. Kelliher, J.P.: On Kato’s conditions for vanishing viscosity. Indiana Univ. Math. J. 56, 1711–1721, 2007

    Article  MathSciNet  MATH  Google Scholar 

  28. Kelliher, J.P.: Vanishing viscosity and the accumulation of vorticity on the boundary. Commun. Math. Sci. 6, 869–880, 2008

    Article  MathSciNet  MATH  Google Scholar 

  29. Kelliher, J.P.: On the vanishing viscosity limit in a disk. Math. Ann. 343, 701–726, 2009

    Article  MathSciNet  MATH  Google Scholar 

  30. Kufner, A., John, O., Fučík, S.: Function spaces, Noordhoff International Publishing, Leyden; Academia, Prague, 1977. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis Mechanics: Analysis.

  31. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248, 1934

    Article  MathSciNet  MATH  Google Scholar 

  32. Lopes Filho, M. C., Mazzucato, A. L., Lopes, H. N. , Vanishing viscosity limit for incompressible flow inside a rotating circle. Phys. D, 237, 1324–1333, 2008.

  33. Lopes Filho, M. C., Mazzucato, A. L., Lopes, H. N., Taylor, M., Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows. Bull. Braz. Math. Soc. (N.S.), 39, 471–513, 2008

  34. Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67, 1045–1128, 2014

    Article  MathSciNet  MATH  Google Scholar 

  35. Mauro, J.A.: On the regularity properties of the pressure field associated to a Hopf weak solution to the Navier–Stokes equations. Pliska Stud. Math. Bulgar. 23, 95–118, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  36. Mazzucato, A., Taylor, M.: Vanishing viscosity plane parallel channel flow and related singular perturbation problems. Anal. PDE 1, 35–93, 2008

    Article  MathSciNet  MATH  Google Scholar 

  37. Nguyen van yen, N., Farge, M., Schneider, K.: Energy dissipating structures produced by walls in two-dimensional flows at vanishing viscosity. Phys. Rev. Lett., 106, 2011

  38. Nguyen van yen, N., Waidmann, M., Klein, R., Farge, M., Schneider, K.: Energy dissipation caused by boundary layer instability at vanishing viscosity. J. Fluid Mech., 849, 676–717, 2018

  39. Temam, R., Wang, X.: On the behavior of the solutions of the Navier–Stokes equations at vanishing viscosity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25, 807–828, 1997, 1998. Dedicated to Ennio De Giorgi.

  40. Wang, X.: A Kato type theorem on zero viscosity limit of Navier–Stokes flows. Indiana Univ. Math. J., 223–241, 2001

Download references

Acknowledgements

The work of R. M. Chen is partially supported by National Science Foundation under grants DMS-1907584 and DMS-2205910. The work of Z. Liang is partially supported by the fundamental research funds for central universities (JBK 2202045). The work of D. Wang is partially supported by the National Science Foundation under grants DMS-1907519 and DMS-2219384. The authors are very grateful to the anonymous referee for the valuable comments and suggestions, and for pointing out the references [37, 38].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Ming Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This research does not involve Human Participants and/or Animals. The manuscript complies to the Ethical Rules applicable for the Archive for Rational Mechanics and Analysis.

Additional information

Communicated by P. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R.M., Liang, Z. & Wang, D. A Kato-Type Criterion for Vanishing Viscosity Near Onsager’s Critical Regularity. Arch Rational Mech Anal 246, 535–559 (2022). https://doi.org/10.1007/s00205-022-01822-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01822-z

Navigation