Skip to main content
Log in

On the inviscid limit of the compressible Navier-Stokes equations near Onsager’s regularity in bounded domains

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The viscous dissipation limit of weak solutions is considered for the Navier-Stokes equations of compressible isentropic flows confined in a bounded domain. We establish a Kato-type criterion for the validity of the inviscid limit for the weak solutions of the Navier-Stokes equations in a function space with the regularity index close to Onsager’s critical threshold. In particular, we prove that under such a regularity assumption, if the viscous energy dissipation rate vanishes in a boundary layer of thickness in the order of the viscosity, then the weak solutions of the Navier-Stokes equations converge to a weak admissible solution of the Euler equations. Our approach is based on the commutator estimates and a subtle foliation technique near the boundary of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akramov I, Debiec T, Skipper J, et al. Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum. Anal PDE, 2020, 13: 789–811

    Article  MathSciNet  Google Scholar 

  2. Bardos C, Nguyen T T. Remarks on the inviscid limit for the compressible flows. In: Recent Advances in Partial Differential Equations and Applications. Contemporary Mathematics, vol. 666. Providence: Amer Math Soc, 2016, 55–67

    Chapter  Google Scholar 

  3. Bardos C, Titi E. Mathematics and turbulence: Where do we stand? J Turbul, 2013, 14: 42–76

    Article  MathSciNet  Google Scholar 

  4. Bardos C, Titi E. Onsager’s conjecture for the incompressible Euler equations in bounded domains. Arch Ration Mech Anal, 2018, 228: 197–207

    Article  MathSciNet  Google Scholar 

  5. Bardos C, Titi E, Wiedemann E. Onsager’s conjecture with physical boundaries and an application to the vanishing viscosity limit. Comm Math Phys, 2019, 370: 291–310

    Article  MathSciNet  Google Scholar 

  6. Basarić D. Vanishing viscosity limit for the compressible Navier-Stokes system via measure-valued solutions. NoDEA Nonlinear Differential Equations Appl, 2020, 27: 57

    Article  MathSciNet  Google Scholar 

  7. Boyer F. Trace theorems and spatial continuity properties for the solutions of the transport equation. Differential Integral Equations, 2005, 18: 891–934

    Article  MathSciNet  Google Scholar 

  8. Buckmaster T, De Lellis C, Szekélyhidi L Jr, et al. Onsager’s conjecture for admissible weak solutions. Comm Pure Appl Math, 2019, 72: 229–274

    Article  MathSciNet  Google Scholar 

  9. Chen G-Q, Perepelitsa M. Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow. Comm Pure Appl Math, 2010, 63: 1469–1504

    Article  MathSciNet  Google Scholar 

  10. Chen R M, Liang Z L, Wang D H. A Kato-type criterion for vanishing viscosity near Onsager’s critical regularity. Arch Ration Mech Anal, 2022, 246: 535–559

    Article  MathSciNet  Google Scholar 

  11. Chen R M, Vasseur A F, Yu C. Global ill-posedness for a dense set of initial data to the isentropic system of gas dynamics. Adv Math, 2021, 393: 108057

    Article  MathSciNet  Google Scholar 

  12. Cheskidov A, Constantin P, Friedlander S, et al. Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity, 2008, 21: 1233–1252

    Article  MathSciNet  Google Scholar 

  13. Chiodaroli E. A counterexample to well-posedness of entropy solutions to the compressible Euler system. J Hyperbolic Differ Equ, 2014, 11: 493–519

    Article  MathSciNet  Google Scholar 

  14. Chiodaroli E, De Lellis C, Kreml O. Global ill-posedness of the isentropic system of gas dynamics. Comm Pure Appl Math, 2015, 68: 1157–1190

    Article  MathSciNet  Google Scholar 

  15. Constantin P, E W, Titi E. Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Comm Math Phys, 1994, 165: 207–209

    Article  MathSciNet  Google Scholar 

  16. Constantin P, Kukavica I, Vicol V. On the inviscid limit of the Navier-Stokes equations. Proc Amer Math Soc, 2015, 143: 3075–3090

    Article  MathSciNet  Google Scholar 

  17. De Lellis C, Székelyhidi L Jr. The Euler equations as a differential inclusion. Ann of Math (2), 2009, 170: 1417–1436

    Article  MathSciNet  Google Scholar 

  18. De Lellis C, Székelyhidi L Jr. On admissibility criteria for weak solutions of the Euler equations. Arch Ration Mech Anal, 2010, 195: 225–260

    Article  MathSciNet  Google Scholar 

  19. Drivas T D, Nguyen H Q. Onsager’s conjecture and anomalous dissipation on domains with boundary. SIAM J Math Anal, 2018, 50: 4785–4811

    Article  MathSciNet  Google Scholar 

  20. E W. Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation. Acta Math Sin (Engl Ser), 2000, 16: 207–218

  21. Feireisl E. Maximal dissipation and well-posedness for the compressible Euler system. J Math Fluid Mech, 2014, 16: 447–461

    Article  MathSciNet  Google Scholar 

  22. Feireisl E, Gwiazda P, Świerczewska-Gwiazda A, et al. Regularity and energy conservation for the compressible Euler equations. Arch Ration Mech Anal, 2017, 223: 1375–1395

    Article  MathSciNet  Google Scholar 

  23. Feireisl E, Hofmanová M. On convergence of approximate solutions to the compressible Euler system. Ann PDE, 2020, 6: 11

    Article  MathSciNet  Google Scholar 

  24. Feireisl E, Klingenberg C, Markfelder S. Euler system with a polytropic equation of state as a vanishing viscosity limit. J Math Fluid Mech, 2022, 24: 67

    Article  MathSciNet  Google Scholar 

  25. Feireisl E, Novotný A, Petzeltová H. On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fluid Mech, 2001, 3: 358–392

    Article  MathSciNet  Google Scholar 

  26. Geng Y C, Li Y C, Zhu S G. Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow with vacuum. Arch Ration Mech Anal, 2019, 234: 727–775

    Article  MathSciNet  Google Scholar 

  27. Gie G-M, Kelliher J P. Boundary layer analysis of the Navier-Stokes equations with generalized Navier boundary conditions. J Differential Equations, 2012, 253: 1862–1892

    Article  MathSciNet  Google Scholar 

  28. Girl V, Kwon H. On non-uniqueness of continuous entropy solutions to the isentropic compressible Euler equations. Arch Ration Mech Anal, 2022, 245: 1213–1283

    Article  MathSciNet  Google Scholar 

  29. Grenier E, Nguyen T T. L instability of Prandtl layers. Ann PDE, 2019, 5: 18

    Article  MathSciNet  Google Scholar 

  30. Guo L, Li F C, Xie F. Asymptotic limits of the isentropic compressible viscous magnetohydrodynamic equations with Navier-slip boundary conditions. J Differential Equations, 2019, 267: 6910–6957

    Article  MathSciNet  Google Scholar 

  31. Guo Y, Nguyen T. A note on Prandtl boundary layers. Comm Pure Appl Math, 2011, 64: 1416–1438

    Article  MathSciNet  Google Scholar 

  32. Isett P. A proof of Onsager’s conjecture. Ann of Math (2), 2018, 188: 871–963

    Article  MathSciNet  Google Scholar 

  33. Kato T. Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In: Seminar on Nonlinear Partial Differential Equations. Mathematical Sciences Research Institute Publications, vol. 2. New York: Springer, 1984, 85–98

    Chapter  Google Scholar 

  34. Kelliher J P. Observations on the vanishing viscosity limit. Trans Amer Math Soc, 2017, 369: 2003–2027

    Article  MathSciNet  Google Scholar 

  35. Kufner A, John O, Fučík S. Function Spaces. Monographs and Textbooks on Mechanics of Solids and Fluids. Leyden: Noordhoff International Publishing, 1977

    Google Scholar 

  36. Kukavica I, Nguyen T T, Vicol V, et al. On the Euler+Prandtl expansion for the Navier-Stokes equations. J Math Fluid Mech, 2022, 24: 47

    Article  MathSciNet  Google Scholar 

  37. Liu C J, Yang T. Ill-posedness of the Prandtl equations in Sobolev spaces around a shear flow with general decay. J Math Pures Appl (9), 2017, 108: 150–162

    Article  MathSciNet  Google Scholar 

  38. Masmoudi N. Remarks about the inviscid limit of the Navier-Stokes system. Comm Math Phys, 2007, 270: 777–788

    Article  MathSciNet  Google Scholar 

  39. Mischler S. On the trace problem for the solutions of the Vlasov equation. Comm Partial Differential Equations, 2000, 25: 1415–1443

    Article  MathSciNet  Google Scholar 

  40. Muramatu T. On imbedding theorems for Besov spaces of functions defined in general regions. Publ Res Inst Math Sci, 1971, 7: 261–285

    Article  MathSciNet  Google Scholar 

  41. Oleinik O A, Samokhin V N. Mathematical Models in Boundary Layer Theory. Boca Raton: Chapman & Hall/CRC, 1999

    Google Scholar 

  42. Onsager L. Statistical hydrodynamics. Nuovo Cim, 1949, 6: 279–287

    Article  MathSciNet  Google Scholar 

  43. Paddick M. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete Contin Dyn Syst, 2016, 36: 2673–2709

    Article  MathSciNet  Google Scholar 

  44. Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm Math Phys, 1998, 192: 433–461

    Article  MathSciNet  Google Scholar 

  45. Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Comm Math Phys, 1998, 192: 463–491

    Article  MathSciNet  Google Scholar 

  46. Schlichting H. Boundary-Layer Theory. New York: McGraw-Hill, 1979

    Google Scholar 

  47. Shvydkoy R. Lectures on the Onsager conjecture. Discrete Contin Dyn Syst Ser S, 2010, 3: 473–496

    MathSciNet  Google Scholar 

  48. Simon J. Compact sets in the space Lp(0, T; B). Ann Mat Pura Appl (4), 1987, 146: 65–96

    Article  MathSciNet  Google Scholar 

  49. Sueur F. On the inviscid limit for the compressible Navier-Stokes system in an impermeable bounded domain. J Math Fluid Mech, 2014, 16: 163–178

    Article  MathSciNet  Google Scholar 

  50. von Kármán T, Tsien H S. Boundary layer in compressible fluids. J Aeronaut Sci, 1938, 5: 227–232

    Article  Google Scholar 

  51. Wang X M. A Kato type theorem on zero viscosity limit of Navier-Stokes flows. Indiana Univ Math J, 2001, 50: 223–241

    Article  MathSciNet  Google Scholar 

  52. Wang Y, Xin Z P, Yong Y. Uniform regularity and vanishing viscosity limit for the compressible Navier-Stokes with general Navier-slip boundary conditions in 3-dimensional domains. SIAM J Math Anal, 2015, 47: 4123–4191

    Article  MathSciNet  Google Scholar 

  53. Wang Y G, Williams M. The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions. Ann Inst Fourier (Grenoble), 2013, 62: 2257–2314

    Article  MathSciNet  Google Scholar 

  54. Wang Y G, Yin J R, Zhu S Y. Vanishing viscosity limit for incompressible Navier-Stokes equations with Navier boundary conditions for small slip length. J Math Phys, 2017, 58: 101507

    Article  MathSciNet  Google Scholar 

  55. Wang Y G, Zhu S Y. On the vanishing dissipation limit for the full Navier-Stokes-Fourier system with non-slip condition. J Math Fluid Mech, 2018, 20: 393–419

    Article  MathSciNet  Google Scholar 

  56. Wang Y G, Zhu S Y. On the inviscid limit for the compressible Navier-Stokes system with no-slip boundary condition. Quart Appl Math, 2018, 76: 499–514

    Article  MathSciNet  Google Scholar 

  57. Xiao Y L, Xin Z P. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm Pure Appl Math, 2007, 60: 1027–1055

    Article  MathSciNet  Google Scholar 

  58. Xin Z P, Yanagisawa T. Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane. Comm Pure Appl Math, 1999, 52: 479–541

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Robin Ming Chen was supported by National Science Foundation of USA (Grant No. DMS-1907584). Zhilei Liang was supported by the Fundamental Research Funds for the Central Universities (Grant No. JBK 2202045). Dehua Wang was supported by National Science Foundation of USA (Grant Nos. DMS-1907519 and DMS-2219384). Runzhang Xu was supported by National Natural Science Foundation of China (Grant No. 12271122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R.M., Liang, Z., Wang, D. et al. On the inviscid limit of the compressible Navier-Stokes equations near Onsager’s regularity in bounded domains. Sci. China Math. 67, 1–22 (2024). https://doi.org/10.1007/s11425-022-2085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2085-3

Keywords

MSC(2020)

Navigation