Skip to main content
Log in

The Vlasov–Poisson–Landau System with the Specular-Reflection Boundary Condition

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the Vlasov–Poisson–Landau system, a classical model for a dilute collisional plasma interacting through Coulombic collisions and with its self-consistent electrostatic field. We establish global stability and well-posedness near the Maxwellian equilibrium state with decay in time and some regularity results for small initial perturbations, in any general bounded domain (including a torus as in a tokamak device), in the presence of specular reflection boundary condition. We provide a new improved \(L^{2}\rightarrow L^{\infty }\) framework: \(L^{2}\) energy estimate combines only with \(S_{ }^{p}\) estimate for the ultra-parabolic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

There is no data generated from this research and thus there is nothing to share.

Notes

  1. The constant \(c_{12}=2\pi e_1^2 e_2^2 \ln \Lambda \), \(\ln \Lambda =\ln \big (\frac{\lambda _D}{b_0}\big )\), where \(\lambda _D=\big (\frac{T}{4\pi n_e e^2}\big )^{\!1/2}\) is the Debye shielding distance and \(b_0=\frac{e^2}{3T}\)  a typical “distance of closest approach” for a thermal particle.

  2. The authors used spherical-type coordinates to make the map almost globally defined; here we just prefer the standard coordinates for simplicity.

  3. We use the column vector convention in the following matrix operation expressions.

References

  1. Bramanti, M., Cerutti, M.C., Manfredini, M.: \({L}^p\) estimates for some ultraparabolic operators with discontinuous coefficients. J. Math. Anal. Appl. 200, 332–354, 1996

    Article  MathSciNet  MATH  Google Scholar 

  2. Briant, M., Guo, Y.: Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions. J. Differ. Equ. 261, 7000–7079, 2016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Cao, Y., Kim, C., Lee, D.: Global strong solutions of the Vlasov–Poisson–Boltzmann system in bounded domains. Arch. Ration. Mech. Anal. 233, 1027–1130, 2019

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, H., Kim, C., Li, Q.: Local well-posedness of Vlasov–Poisson–Boltzmann equation with generalized diffuse boundary condition. J. Stat. Phys. 179, 535–631, 2020

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Degond, P., Lemou, M.: Dispersion relations for the linearized Fokker–Planck equation. Arch. Ration. Mech. Anal. 138, 137–167, 1997

    Article  MathSciNet  MATH  Google Scholar 

  6. Dong, H., Guo, Y., Yastrzhembskiy, T.: Kinetic Fokker–Planck and Landau equations with specular reflection boundary condition. Kinet. Relat. Models 3, 467–516, 2022

  7. Dong, H., Yastrzhembskiy, T.: Global estimates for kinetic Kolmogorov-Planck equations in nondivergence form. Arch. Ration. Mech. Anal. 1, 501–564, 2022

  8. Esposito, R., Guo, Y., Kim, C., Marra, R.: Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun. Math. Phys. 323, 177–239, 2013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Esposito, R., Guo, Y., Kim, C., Marra, R.: Stationary solutions to the Boltzmann equation in the hydrodynamic limit. Ann. PDE 4, 1–119, 2018

    Article  MathSciNet  MATH  Google Scholar 

  10. Esposito, R., Guo, Y., Marra, R.: Hydrodynamic limit of a kinetic gas flow past an obstacle. Commun. Math. Phys. 364, 765–823, 2018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Golse, F., Imbert, C., Mouhot, C., Vasseur, A.F.: Harnack inequality for kinetic Fokker–Planck equations with rough coefficients and application to the Landau equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 19, 253–295, 2019

    MathSciNet  MATH  Google Scholar 

  12. Guo, Y.: Singular solutions of the Vlasov–Maxwell system on a half line. Arch. Ration. Mech. Anal. 131, 241–304, 1995

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231, 391–434, 2002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Guo, Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197, 713–809, 2010

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, Y.: The Vlasov–Poisson–Landau system in a periodic box. J. Am. Math. Soc. 25, 759–812, 2012

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, Y., Hwang, H.J., Jang, J.W., Ouyang, Z.: Correction: to The Landau equation with the specular reflection boundary condition 240(1), 605–626 (2021)

  17. Guo, Y., Hwang, H.J., Jang, J.W., Ouyang, Z.: The Landau equation with the specular reflection boundary condition. Arch. Ration. Mech. Anal. 236, 1389–1454, 2020

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, Y., Kim, C., Tonon, D., Trescases, A.: BV-regularity of the Boltzmann equation in non-convex domains. Arch. Ration. Mech. Anal. 220, 1045–1093, 2016

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, Y., Kim, C., Tonon, D., Trescases, A.: Regularity of the Boltzmann equation in convex domains. Invent. Math. 207, 115–290, 2017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Guo, Y., Tice, I.: Almost exponential decay of periodic viscous surface waves without surface tension. Anal. PDE 6, 459–531, 2013

    MathSciNet  MATH  Google Scholar 

  21. Guo, Y., Tice, I.: Decay of viscous surface waves without surface tension in horizontally infinite domains. Arch. Ration. Mech. Anal. 207, 1429–1533, 2013

    Article  MathSciNet  MATH  Google Scholar 

  22. Hwang, H.J.: Regularity for the Vlasov–Poisson system in a convex domain. SIAM J. Math. Anal. 36, 121–171, 2004

    Article  MathSciNet  MATH  Google Scholar 

  23. Hwang, H.J., Velázquez, J.J.L.: Global existence for the Vlasov–Poisson system in bounded domains. Arch. Ration. Mech. Anal. 195, 763–796, 2010

    Article  MathSciNet  MATH  Google Scholar 

  24. Kim, C.: Formation and propagation of discontinuity for Boltzmann equation in non-convex domains. Commun. Math. Phys. 308, 641–701, 2011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Kim, J., Guo, Y., Hwang, H.J.: An \({L}^2\) to \({L}^{\infty }\) framework for the Landau equation. Peking Math. J. 3(2), 131–202, 2020

    Article  MathSciNet  MATH  Google Scholar 

  26. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Hölder Spaces. Graduate Studies in Mathematics, vol. 12. American Mathematical Society, Providence (1996)

    Google Scholar 

  27. Polidoro, S., Ragusa, M.A.: Sobolev–Morrey spaces related to an ultraparabolic equation. Manuscr. Math. 96, 371–392, 1998

    Article  MathSciNet  MATH  Google Scholar 

  28. Strain, R.M., Guo, Y.: Stability of the relativistic Maxwellian in a collisional plasma. Commun. Math. Phys. 251, 263–320, 2004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Strain, R.M., Guo, Y.: Almost exponential decay near Maxwellian. Commun. Partial Differ. Equ. 31, 417–429, 2006

    Article  MathSciNet  MATH  Google Scholar 

  30. Strain, R.M., Guo, Y.: Exponential decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal. 187, 287–339, 2008

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, L., Guo, Y.: Geometric correction for diffusive expansion of steady neutron transport equation. Commun. Math. Phys. 336, 1473–1553, 2015

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Sona Akopian for many helpful discussions. They are also grateful to Dr. Timur Yastrzhembskiy for careful reading and pointing out a few important issues in an earlier version of the manuscript. Yan Guo’s research is supported in part by NSF Grant DMS-2106650. Hongjie Dong is partially supported by the Simons Foundation, Grant No. 709545, a Simons fellowship, Grant No. 007638, and the NSF under Agreement DMS-2055244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Guo.

Additional information

Communicated by T.-P. Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Guo, Y. & Ouyang, Z. The Vlasov–Poisson–Landau System with the Specular-Reflection Boundary Condition. Arch Rational Mech Anal 246, 333–396 (2022). https://doi.org/10.1007/s00205-022-01818-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01818-9

Navigation