Skip to main content

Advertisement

Log in

The Landau Equation with the Specular Reflection Boundary Condition

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

A Correction to this article was published on 23 February 2021

This article has been updated

Abstract

The existence and stability of the Landau equation (1936) in a general bounded domain with a physical boundary condition is a long-outstanding open problem. This work proves the global stability of the Landau equation with the Coulombic potential in a general smooth bounded domain with the specular reflection boundary condition for initial perturbations of the Maxwellian equilibrium states. The highlight of this work also comes from the low-regularity assumptions made for the initial distribution. This work generalizes the recent global stability result for the Landau equation in a periodic box (Kim et al. in Peking Math J, 2020). Our methods consist of the generalization of the wellposedness theory for the Fokker–Planck equation (Hwang et al. SIAM J Math Anal 50(2):2194–2232, 2018; Hwang et al. Arch Ration Mech Anal 214(1):183–233, 2014) and the extension of the boundary value problem to a whole space problem, as well as the use of a recent extension of De Giorgi–Nash–Moser theory for the kinetic Fokker–Planck equations (Golse et al. Ann Sc Norm Super Pisa Cl Sci 19(1):253–295, 2019) and the Morrey estimates (Bramanti et al. J Math Anal Appl 200(2):332–354, 1996) to further control the velocity derivatives, which ensures the uniqueness. Our methods provide a new understanding of the grazing collisions in the Landau theory for an initial-boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

Notes

  1. Note that the trace estimate (37) is actually uniform in the iteration process generated by the contraction mapping \({\mathcal {T}}\), and therefore the applicability can be justified.

  2. The authors of this work used spherical-type coordinates to make the map almost globally defined; here we just prefer the standard coordinates for simplicity.

  3. We use the column vector convention in the matrix operation expressions.

References

  1. Alexandre, R., Liao, J., Lin, C.: Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinet. Relat. Models8(4), 617–650, 2015

    MathSciNet  MATH  Google Scholar 

  2. Arsenev, A.A.: On a connection between the Boltzmann equation and the Landau–Fokker–Planck equations. Dokl. Akad. Nauk SSSR305(2), 322–324, 1989

    ADS  MathSciNet  Google Scholar 

  3. Boblylev, A.V., Pulvirenti, M., Saffirio, C.: From particle systems to the Landau equation: a consistency result. Commun. Math. Phys. 319(3), 683–702, 2013

    ADS  MathSciNet  MATH  Google Scholar 

  4. Bobylëv, A.V.: The expansion of the Boltzmann collision integral in a Landau series. Dokl. Akad. Nauk SSSR225(3), 535–538, 1975

    ADS  MathSciNet  Google Scholar 

  5. Bobylev, A., Gamba, I., Potapenko, I.: On some properties of the Landau kinetic equation. J. Stat. Phys. 161(6), 1327–1338, 2015

    ADS  MathSciNet  MATH  Google Scholar 

  6. Bramanti, M., Cerutti, M.C., Manfredini, M.: \(\cal{L}^p\) estimates for some ultraparabolic operators with discontinuous coefficients. J. Math. Anal. Appl. 200(2), 332–354, 1996

    MathSciNet  MATH  Google Scholar 

  7. Carrapatoso, K.: Exponential convergence to equilibrium for the homogeneous Landau equation with hard potentials. Bull. Sci. Math. 139(7), 777–805, 2015

    MathSciNet  MATH  Google Scholar 

  8. Carrapatoso, K.: On the rate of convergence to equilibrium for the homogeneous Landau equation with soft potentials. J. Math. Pures Appl. (9)104(2), 276–310, 2015

    MathSciNet  MATH  Google Scholar 

  9. Carrapatoso, K., Tristani, I., Kung-Chien, W.: Cauchy problem and exponential stability for the inhomogeneous Landau equation. Arch. Ration. Mech. Anal. 221(1), 363–418, 2016

    MathSciNet  MATH  Google Scholar 

  10. Chen, H., Li, W., Chaojiang, X.: Gevrey regularity for solution of the spatially homogeneous Landau equation. Acta Math. Sci. Ser. B (Engl. Ed.)29(3), 673–686, 2009

    MathSciNet  MATH  Google Scholar 

  11. Chen, Y.: Smoothing effects for weak solutions of the spatially homogeneous Landau–Fermi–Dirac equation for hard potentials. Acta Appl. Math. 113(1), 101–116, 2011

    MathSciNet  MATH  Google Scholar 

  12. Chen, Y., Desvillettes, L., He, L.: Smoothing effects for classical solutions of the full Landau equation. Arch. Ration. Mech. Anal. 193(1), 21–55, 2009

    MathSciNet  MATH  Google Scholar 

  13. Cinti, C., Polidoro, S.: Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators. J. Math. Anal. Appl. 338(2), 946–969, 2008

    MathSciNet  MATH  Google Scholar 

  14. De Giorgi, E.: Sull’analiticità delle estremali degli integrali multipli. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8)20, 438–441, 1956

    MathSciNet  MATH  Google Scholar 

  15. De Giorgi, E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3(3), 25–43, 1957

    MathSciNet  MATH  Google Scholar 

  16. Degond, P., Lucquin-Desreux, B.: The Fokker–Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Models Methods Appl. Sci. 2(2), 167–182, 1992

    MathSciNet  MATH  Google Scholar 

  17. Desvillettes, L.: On asymptotics of the Boltzmann equation when the collisions become grazing. Transp. Theory Stat. Phys. 21(3), 259–276, 1992

    ADS  MathSciNet  MATH  Google Scholar 

  18. Desvillettes, L.: Entropy dissipation estimates for the Landau equation in the Coulomb case and applications. J. Funct. Anal. 269(5), 1359–1403, 2015

    MathSciNet  MATH  Google Scholar 

  19. Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness. Commun. Partial Differ. Equ. 25(1–2), 179–259, 2000

    MathSciNet  MATH  Google Scholar 

  20. Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard potentials. II. \(H\)-theorem and applications. Commun. Partial Differ. Equ. 25(1–2), 261–298, 2000

    MathSciNet  MATH  Google Scholar 

  21. Di Francesco, M., Polidoro, S.: Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form. Adv. Differ. Equ. 11(11), 1261–1320, 2006

    MathSciNet  MATH  Google Scholar 

  22. DiPerna, R.J., Lions, P.-L.: On the Fokker–Planck–Boltzmann equation. Commun. Math. Phys. 120(1), 1–23, 1988

    ADS  MathSciNet  MATH  Google Scholar 

  23. DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. (2)130(2), 321–366, 1989

    MathSciNet  MATH  Google Scholar 

  24. DiPerna, R.J., Lions, P.-L., Meyer, Y.: \(L^p\) regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire8(3–4), 271–287, 1991

    ADS  MathSciNet  MATH  Google Scholar 

  25. Duan, R., Liu, S., Sakamoto, S., Strain, R.M.: Global mild solutions of the landau and non-cutoff boltzmann equations, accepted for publication in Communications on Pure and Applied Mathematics, 2019

  26. El Safadi, M.: Smoothness of weak solutions of the spatially homogeneous Landau equation. Anal. Appl. (Singap.)5(1), 29–49, 2007

    MathSciNet  MATH  Google Scholar 

  27. Fournier, N.: Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential. Commun. Math. Phys. 299(3), 765–782, 2010

    ADS  MathSciNet  MATH  Google Scholar 

  28. Fournier, N., Guérin, H.: Well-posedness of the spatially homogeneous Landau equation for soft potentials. J. Funct. Anal. 256(8), 2542–2560, 2009

    MathSciNet  MATH  Google Scholar 

  29. Golse, F., Imbert, C., Mouhot, C., Vasseur, A.: Harnack inequality for kinetic Fokker–Planck equations with rough coefficients and application to the Landau equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 19(1), 253–295, 2019

    MathSciNet  MATH  Google Scholar 

  30. Golse, F., Vasseur, A.: Hölder regularity for hypoelliptic kinetic equations with rough diffusion coefficients, 2015. ArXiv e-prints arXiv:1506.01908

  31. Gualdani, M., Guillen, N.: On \(A_p\) weights and the Landau equation. Calc. Var. Partial Differ. Equ. 58(1), 17, 2019

    MATH  Google Scholar 

  32. Gualdani, M.P., Guillen, N.: Estimates for radial solutions of the homogeneous Landau equation with Coulomb potential. Anal. PDE9(8), 1772–1809, 2016

    MathSciNet  MATH  Google Scholar 

  33. Guo, Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231(3), 391–434, 2002

    ADS  MathSciNet  MATH  Google Scholar 

  34. Guo, Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197(3), 713–809, 2010

    MathSciNet  MATH  Google Scholar 

  35. Guo, Y., Kim, C., Tonon, D., Trescases, A.: Regularity of the Boltzmann equation in convex domains. Invent. Math. 207(1), 115–290, 2017

    ADS  MathSciNet  MATH  Google Scholar 

  36. Ha, S.-Y., Xiao, Q.: \(L^2\)-stability of the Landau equation near global Maxwellians. J. Math. Phys. 56(8), 081505, 2015

    ADS  MathSciNet  MATH  Google Scholar 

  37. Hérau, F., Pravda-Starov, K.: Anisotropic hypoelliptic estimates for Landau-type operators. J. Math. Pures Appl. (9)95(5), 513–552, 2011

    MathSciNet  MATH  Google Scholar 

  38. Hérau, F., Li, W.-X.: Global hypoelliptic estimates for Landau-type operators with external potential. Kyoto J. Math. 53(3), 533–565, 2013

    MathSciNet  MATH  Google Scholar 

  39. Hwang, H.J., Jang, J., Jung, J.: The Fokker–Planck equation with absorbing boundary conditions in bounded domains. SIAM J. Math. Anal50(2), 2194–2232, 2018

    MathSciNet  MATH  Google Scholar 

  40. Hwang, H.J., Jang, J., Velázquez, J.J.L.: The Fokker–Planck equation with absorbing boundary conditions. Arch. Ration. Mech. Anal. 214(1), 183–233, 2014

    MathSciNet  MATH  Google Scholar 

  41. Hwang, H.J., Phan, D.: On the Fokker–Planck equations with inflow boundary conditions. Q. Appl. Math. 75(2), 287–308, 2017

    MathSciNet  MATH  Google Scholar 

  42. Imbert, C., Mouhot, C.: Hölder continuity of solutions to hypoelliptic equations with bounded measurable coefficients, 2015. ArXiv e-prints arXiv:1505.04608

  43. Imbert, C., Silvestre, L.: The weak Harnack inequality for the Boltzmann equation without cut-off. J. Eur. Math. Soc. (JEMS)22(2), 507–592, 2020

    MathSciNet  MATH  Google Scholar 

  44. Kim, J., Guo, Y., Hwang H.J.: An \(l^2\) to \(l^\infty \) framework for the landau equation. Peking Math. J., 2020. https://doi.org/10.1007/s42543-019-00018-x

  45. Lanconelli, E., Polidoro, S.: On a class of hypoelliptic evolution operators. Rend. Sem. Mat. Univ. Politec. Torino52(1), 29–63, 1994. Partial differential equations, II (Turin, 1993)

    MathSciNet  MATH  Google Scholar 

  46. Lions, P.-L.: On Boltzmann and Landau equations. Philos. Trans. R. Soc. Lond. Ser. A346(1679), 191–204, 1994

    ADS  MathSciNet  MATH  Google Scholar 

  47. Liqun, Z.: The \(C^\alpha \) regularity of a class of ultraparabolic equations. Third International Congress of Chinese Mathematicians. Part 1, 2, Volume 2 of AMS/IP Studies in Advanced Mathematics, 42, Part. 1, pp. 619–622. American Mathematical Society, Providence, RI, 2008

  48. Liu, S., Ma, X.: Regularizing effects for the classical solutions to the Landau equation in the whole space. J. Math. Anal. Appl. 417(1), 123–143, 2014

    MathSciNet  MATH  Google Scholar 

  49. Luo, L., Hongjun, Y.: Spectrum analysis of the linearized relativistic Landau equation. J. Stat. Phys. 163(4), 914–935, 2016

    ADS  MathSciNet  MATH  Google Scholar 

  50. Manfredini, M., Polidoro, S.: Interior regularity for weak solutions of ultraparabolic equations in divergence form with discontinuous coefficients. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8)1(3), 651–675, 1998

    MathSciNet  MATH  Google Scholar 

  51. Moser, J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468, 1960

    MathSciNet  MATH  Google Scholar 

  52. Moser, J.: A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 17, 101–134, 1964

    MathSciNet  MATH  Google Scholar 

  53. Mouhot, C.: De Giorgi–Nash–Moser and Hörmander theories: new interplays. Proc. Int. Congr. Math. 1, 21–30, 2018

    MathSciNet  MATH  Google Scholar 

  54. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954, 1958

    MathSciNet  MATH  Google Scholar 

  55. Pascucci, A., Polidoro, S.: The Moser’s iterative method for a class of ultraparabolic equations. Commun. Contemp. Math. 6(3), 395–417, 2004

    MathSciNet  MATH  Google Scholar 

  56. Polidoro, S.: On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type. Mat. (Catania)49(1), 53–105, 1994

    MathSciNet  MATH  Google Scholar 

  57. Polidoro, S.: A global lower bound for the fundamental solution of Kolmogorov–Fokker–Planck equations. Arch. Ration. Mech. Anal. 137(4), 321–340, 1997

    MathSciNet  MATH  Google Scholar 

  58. Polidoro, S., Ragusa, M.A.: Hölder regularity for solutions of ultraparabolic equations in divergence form. Potential Anal. 14(4), 341–350, 2001

    MathSciNet  MATH  Google Scholar 

  59. Strain, R.M., Guo, Y.: Almost exponential decay near Maxwellian. Commun. Partial Differ. Equ. 31(1–3), 417–429, 2006

    MathSciNet  MATH  Google Scholar 

  60. Strain, R.M., Tasković, M.: Entropy dissipation estimates for the relativistic Landau equation, and applications. J. Funct. Anal. 277(4), 1–50, 2019. arXiv:1806.08720

    MathSciNet  MATH  Google Scholar 

  61. Strain, R.M., Zhu, K.: The Vlasov–Poisson–Landau system in \(\mathbb{R}^3_x\). Arch. Ration. Mech. Anal. 210(2), 615–671, 2013

    MathSciNet  MATH  Google Scholar 

  62. Ukai, S.: Solutions of the Boltzmann equation. Patterns and Waves. Studies in Mathematics and its Applications, Vol. 18 (Eds. Takaaki N., Masayasu M. and Hiroshi F.) North-Holland, Amsterdam, 37–96, 1986

  63. Villani, C.: On the spatially homogeneous Landau equation for Maxwellian molecules. Math. Models Methods Appl. Sci. 8(6), 957–983, 1998

    MathSciNet  MATH  Google Scholar 

  64. Villani, C.: Decrease of the Fisher information for solutions of the spatially homogeneous Landau equation with Maxwellian molecules. Math. Models Methods Appl. Sci. 10(2), 153–161, 2000

    MathSciNet  MATH  Google Scholar 

  65. Villani, C.: On the Cauchy problem for Landau equation: sequential stability, global existence. Adv. Differ. Equ. 1(5), 793–816, 1996

    MathSciNet  MATH  Google Scholar 

  66. Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143(3), 273–307, 1998

    MathSciNet  MATH  Google Scholar 

  67. Wang, W.D., Zhang, L.: The \(C^\alpha \) regularity of a class of non-homogeneous ultraparabolic equations. Sci. China Ser. A52(8), 1589–1606, 2009

    MathSciNet  MATH  Google Scholar 

  68. Wang, W., Zhang, L.: The \(C^\alpha \) regularity of weak solutions of ultraparabolic equations. Discrete Contin. Dyn. Syst. 29(3), 1261–1275, 2011

    MathSciNet  MATH  Google Scholar 

  69. Wu, K.-C.: Global in time estimates for the spatially homogeneous Landau equation with soft potentials. J. Funct. Anal. 266(5), 3134–3155, 2014

    MathSciNet  MATH  Google Scholar 

  70. Yin, H., Zhao, W.: The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, III: the 3-D Boltzmann equation. J. Differ. Equ. 264(1), 30–81, 2018

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Yan Guo’s research is supported in part by NSF Grants DMS-1611695 and DMS-1810868. Hyung Ju Hwang’s research is supported by the Basic Science Research Program through the National Research Foundation of Korea NRF-2017R1E1A1A0 3070105 and NRF-2019R1A5A1028324. Jin Woo Jang’s research is supported by the Korean IBS project IBS-R003-D1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Guo.

Additional information

Communicated by F. Lin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Hwang, H.J., Jang, J.W. et al. The Landau Equation with the Specular Reflection Boundary Condition. Arch Rational Mech Anal 236, 1389–1454 (2020). https://doi.org/10.1007/s00205-020-01496-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01496-5

Navigation