Skip to main content
Log in

On the Free Surface Motion of Highly Subsonic Heat-Conducting Inviscid Flows

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

For the free surface problem of highly subsonic heat-conducting inviscid flow in 2-D and 3-D, a priori estimates for geometric quantities of free surfaces, such as the second fundamental form and the injectivity radius of the normal exponential map, and the Sobolev norms of fluid variables, are proved by investigating the coupling of the boundary geometry and the interior solutions. An interesting feature for the free surface problem studied in this paper is the loss of one more derivative than the problem of incompressible Euler equations, for which a geometric approach was introduced by Christodoulou and Lindblad [11]. Due to the loss of the one more derivative and loss of the symmetry of equations which create significant difficulties in closing the estimates in Sobolev spaces of finite regularity, the geometric approach in [11] needs to be substantially developed and extended by exploring the interaction of large variation of temperature, heat-conduction, non-zero divergence of the fluid velocity and the evolution of free surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T.: Low Mach number limit of the full Navier–Stokes equations. Arch. Ration. Mech. Anal. 180, 1–73, 2006

  2. Alazard, T., Burq , N., Zuily , C.: On the water waves equations with surface tension. Duke Math. J. 158, 413–499, 2011

  3. Alazard , T., Burq , N., Zuily , C.: On the Cauchy problem for gravity water waves. Invent. Math. 198, 71–163, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  4. Alazard, T., Delort , J.-M.: Global solutions and asymptotic behavior for two dimensional gravity water waves. Ann. Sci. Ec. Norm. Super. 48, 1149–1238, 2015

  5. Ambrose, D., Masmoudi , N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58, 1287–1315, 2005

  6. Arnold , V.I.: Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications aal’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16, 316–361, 1966

    Google Scholar 

  7. Bieri , L., Miao , S., Shahshahani , S., Wu , S.: On the motion of a self-gravitating incompressible fluid with free boundary. Commun. Math. Phys. 355, 161–243, 2017

    ADS  MathSciNet  MATH  Google Scholar 

  8. Brenier , Y.: Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Commun. Pure Appl. Math. 52, 411–452, 1999

    MathSciNet  MATH  Google Scholar 

  9. Castro , A., Cordoba , D., Fefferman , C., Gancedo , F., Gomez-Serrano , J.: Finite time singularities for the free boundary incompressible Euler equations. Ann. Math. 178, 1061–1134, 2013

    MathSciNet  MATH  Google Scholar 

  10. Christodoulou , D.: The action principle and partial differential equations. In: Griffiths , P.A., Mather , J.N., Stein , E.M. (eds.) Ann. Math. Stud., vol. 146. Princeton University Press, Princeton 2000

    Google Scholar 

  11. Christodoulou , D., Lindblad , H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53, 1536–1602, 2000

    MathSciNet  MATH  Google Scholar 

  12. Coutand , D., Hole , J., Shkoller , S.: Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit. SIAM J. Math. Anal. 45, 3690–3767, 2013

    MathSciNet  MATH  Google Scholar 

  13. Coutand , D., Shkoller , S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20, 829–930, 2007

    MathSciNet  MATH  Google Scholar 

  14. Coutand , D., Shkoller , S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Ration. Mech. Anal. 206, 515–616, 2012

    MathSciNet  MATH  Google Scholar 

  15. Coutand , D., Shkoller , S.: On the finite-time splash and splat singularities for the 3-D free-surface Euler equations. Commun. Math. Phys. 325, 143–83, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  16. Deng , Y., Ionescu , A.D., Pausader , B., Pusateri , F.: Global solutions of the gravity-capillary water-wave system in three dimensions. Acta Math. 219, 213–402, 2017

    MathSciNet  MATH  Google Scholar 

  17. Ebin , D.G.: The equations of motion of a perfect fluid with free boundary are not well posed. Commun. Partial Differ. Equ. 12, 1175–1201, 1987

    MathSciNet  MATH  Google Scholar 

  18. Ebin , D.G., Marsden , G.: Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. Math. 92, 102–163, 1970

    MathSciNet  MATH  Google Scholar 

  19. Germain , P., Masmoudi , N., Shatah , J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math. 175, 691–754, 2012

    MathSciNet  MATH  Google Scholar 

  20. Ginsberg , D., Lindblad , H., Luo , C.: Local well-posedness for the motion of a compressible, self-gravitating liquid with free surface boundary. Arch. Ration. Mech. Anal. 236(2), 603–733, 2020

    MathSciNet  MATH  Google Scholar 

  21. Hadzic , M., Jang , J.: Nonlinear stability of expanding star solutions in the radially-symmetric mass-critical Euler–Poisson system. Commun. Pure Appl. Math. 71, 827–891, 2018

    MATH  Google Scholar 

  22. Hadzic , M., Jang , J.: Expanding large global solutions of the equations of compressible fluid mechanics. Invent. Math. 214, 1205–1266, 2018

    ADS  MathSciNet  MATH  Google Scholar 

  23. Hao , C.: On the motion of free interface in ideal incompressible MHD. Arch. Ration. Mech. Anal. 224, 515–553, 2017

    MathSciNet  MATH  Google Scholar 

  24. Hao , C., Luo , T.: Free boundary problem of incompressible inviscid magnetohydrodynamic flows. Arch. Ration. Mech. Anal. 212, 805–847, 2014

    MathSciNet  MATH  Google Scholar 

  25. Hao , C., Wang , D.: A priori estimates for the free boundary problem of incompressible Neo–Hookean elastodynamics. J. Differ. Equ. 261, 712–737, 2016

    ADS  MathSciNet  MATH  Google Scholar 

  26. Huang , F., Wang , T., Wang , Y.: Diffusive wave in the low Mach limit for compressible Navier–Stokes equations. Adv. Math. 319, 348–395, 2017

    MathSciNet  MATH  Google Scholar 

  27. Ifrim , M., Tataru , D.: Two dimensional water waves in holomorphic coordinates II: global solutions. Bull. Soc. Math. France 144, 369–394, 2016

    MathSciNet  MATH  Google Scholar 

  28. Ionescu , A.D., Pusateri , F.: Global solutions for the gravity water waves system in 2d. Invent. Math. 199, 653–804, 2015

    ADS  MathSciNet  MATH  Google Scholar 

  29. Jang , J., Masmoudi , N.: Well-posedness of compressible Euler equations in a physical vacuum. Commun. Pure Appl. Math. 68, 61–111, 2015

    MathSciNet  MATH  Google Scholar 

  30. Jiang , S., Ju , Q., Li , F., Xin , Z.: Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data. Adv. Math. 259, 20–384, 2014

    MathSciNet  MATH  Google Scholar 

  31. Klainerman , S., Majda , A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524, 1981

    ADS  MathSciNet  MATH  Google Scholar 

  32. Klainerman , S., Majda , A.: Compressible and incompressible fluids. Commun. Pure Appl. Math. 35, 629–653, 1982

    ADS  MathSciNet  MATH  Google Scholar 

  33. Lannes , D.: Well-posedness of the water waves equations. J. Am. Math. Soc. 18, 605–54, 2005

    MathSciNet  MATH  Google Scholar 

  34. Lannes, D.: The water waves problem: mathematical analysis and asympototics. In: Mathematical Surveys and Monographs, vol. 188. American Mathematical Society, Providence (2013)

  35. Lebovitz , N.R.: On the fluid dynamics of evolving stars. Proc. R. Soc. Lond. Ser. A 375, 249–269, 1981

    ADS  MathSciNet  MATH  Google Scholar 

  36. Lindblad , H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162, 109–194, 2005

    MathSciNet  MATH  Google Scholar 

  37. Lindblad , H.: Well posedness for the motion of a compressible liquid with free surface boundary. Commun. Math. Phys. 260, 319–392, 2005

    ADS  MathSciNet  MATH  Google Scholar 

  38. Lindblad , H., Luo , C.: A priori estimates for the compressible euler equations for a liquid with free surface boundary and the incompressible limit. Commun. Pure Appl. Math. 71, 1273–1333, 2018

    MathSciNet  MATH  Google Scholar 

  39. Liu, J.-G., Pego, R.L., Slepcev, D.: Least action principles for incompressible flows and geodesics between shapes. Calc. Var. Partial Differ. Equ. 58(5), Art. 179, 43 (2019)

  40. Luo, C.: On the motion of a compressible gravity water wave with vorticity. Ann. PDE 4(2), Art. 20, 71 (2018)

  41. Luo , C., Zhang , J.: A regularity result for the incompressible magnetohydrodynamics equations with free surface boundary. Nonlinearity 33(4), 1499–1527, 2020

    ADS  MathSciNet  MATH  Google Scholar 

  42. Luo , T., Xin , Z., Zeng , H.: Well-Posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation. Arch. Ration. Mech. Anal. 213, 763–831, 2014

    MathSciNet  MATH  Google Scholar 

  43. Luo , T., Zeng , H.: Global existence of smooth solutions and convergence to Barenblatt solutions for the physical vacuum free boundary problem of compressible euler equations with damping. Commun. Pure Appl. Math. 69, 1354–1396, 2016

    MathSciNet  MATH  Google Scholar 

  44. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. In: Applied Mathematical Sciences, vol. 53. Springer, Berlin (1984)

  45. Métivier , G., Schochet , S.: The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158, 61–90, 2001

    MathSciNet  MATH  Google Scholar 

  46. Rehm , R.G., Baum , H.R.: The equations of motion for thermally driven, buoyant flows. J. Res. Natl. Bur. Stand. 83, 297–308, 1978

    MATH  Google Scholar 

  47. Secchi , P., Valli , A.: A free boundary problem for compressible viscous fluids. J. Reine Angew. Math. 341, 1–31, 1983

    MathSciNet  MATH  Google Scholar 

  48. Shatah , J., Zeng , C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61, 698–744, 2008

    MathSciNet  MATH  Google Scholar 

  49. Shatah , J., Zeng , C.: A priori estimates for fluid interface problems. Commun. Pure Appl. Math. 61, 848–876, 2008

    MathSciNet  MATH  Google Scholar 

  50. Shatah , J., Zeng , C.: Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal. 199, 653–705, 2011

    MathSciNet  MATH  Google Scholar 

  51. Shnirelman , A.: The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid. Mat. Sb. (N.S.) 128, 82–109, 1985. translation in Math. USSR-Sb. 56 (1987), 79–105

    MathSciNet  Google Scholar 

  52. Trakhinin , Y.: Local existence for the free boundary problem for the non-relativistic and relativistic compressible Euler equations with a vacuum boundary condition. Commun. Pure Appl. Math. 62, 1551–1594, 2009

    MathSciNet  MATH  Google Scholar 

  53. Wu , S.: Well-posedness in Sobolev spaces of the full water wave problem in \(2\)-D. Invent. Math. 130, 39–72, 1997

    ADS  MathSciNet  Google Scholar 

  54. Wu , S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12, 445–495, 1999

    MathSciNet  MATH  Google Scholar 

  55. Wu , S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177, 45–135, 2009

    ADS  MathSciNet  MATH  Google Scholar 

  56. Wu , S.: Global wellposedness of the 3-D full water wave problem. Invent. Math. 184, 125–220, 2011

    ADS  MathSciNet  MATH  Google Scholar 

  57. Wu, S.: On a class of self-similar 2D surface water waves. arXiv:1206.2208

  58. Zeng , H.: Global resolution of the physical vacuum singularity for 3-D isentropic inviscid flows with damping in spherically symmetric motions. Arch. Ration. Mech. Anal. 226, 33–82, 2017

    MathSciNet  MATH  Google Scholar 

  59. Zeng , H.: Almost global solutions to the three-dimensional isentropic inviscid flows with damping in physical vacuum around Barenlatt solutions. Arch. Ration. Mech. Anal. 239, 553–597, 2021. https://doi.org/10.1007/s00205-020-01581-9

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang , P., Zhang , Z.: On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 61, 877–940, 2008

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Luo’s research was supported in part by a GRF Grant CityU 11303616 of RGC (Hong Kong). Zeng’s research was supported in part by NSFC Grants 11822107 and 11671225, and the Center of Mathematical Sciences and Applications, Harvard University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Luo.

Additional information

Communicated by F. Lin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Sobolev Lemmas, Interpolation Inequalities and Elliptic Estiamtes

Appendix: Sobolev Lemmas, Interpolation Inequalities and Elliptic Estiamtes

We list here Sobolev lemmas and interpolation inequalities with the dependence of the Sobolev constants on the lower bound of \(1/\iota _1\); and the elliptic estimates for the boundary problem. Before that, recall the following notations for easier reference. The \(L^p\)-norms of a (0, r)-tensor \(\alpha \) on \(\Omega \) and \(\partial \Omega \) are denoted, respectively, by \(\Vert \alpha \Vert _{L^p}\) and \( | \alpha | _{L^p}\):

$$\begin{aligned} \Vert \alpha \Vert _{L^p}= \left( \int _\Omega |\alpha |^p {\mathrm{d}}\mu _g\right) ^{1/p} \ \ \mathrm{for} \ \ 1\le p < \infty , \ \ \Vert \alpha \Vert _{L^\infty }={ \mathrm{ess} \ \mathrm{sup} }_\Omega |\alpha | \end{aligned}$$

and

$$\begin{aligned} | \alpha |_{L^p}= \left( \int _{\partial \Omega } |\alpha |^p {\mathrm{d}}\mu _\zeta \right) ^{1/p} \ \ \mathrm{for} \ \ 1\le p < \infty , \ \ | \alpha |_{L^\infty }={ \mathrm{ess} \ \mathrm{sup} }_{\partial \Omega } |\alpha | . \end{aligned}$$

Lemma A-1

(Lemmas A.1-A.4 in [11]) Let \(\alpha \) be a (0, r) tensor and \(\iota _1\ge 1/K_1\). Assume k, m are positive integers, and \(p\ge 1\). We have

  1. (i)

    if \(2\le p\le s\le q\le \infty \) and \(m/s=k/p+(m-k)/q\),

    $$\begin{aligned}&| \overline{\nabla }^k \alpha |_{L^s}^{m} \le C(k,m,n,s) | \alpha |_{L^q}^{m-k} | \overline{\nabla }^m \alpha |_{L^p}^{k}, \end{aligned}$$
    (A-1a)
    $$\begin{aligned}&\left( \sum _{i=0}^k \Vert \nabla ^i \alpha \Vert _{L^s} \right) ^{m} \le C(k,m,n,s) \Vert \alpha \Vert _{L^q}^{m-k} \left( \sum _{i=0}^m K_1^{m-i} \Vert \nabla ^i \alpha \Vert _{L^p} \right) ^{k}; \end{aligned}$$
    (A-1b)
  2. (ii)

    for any \(\delta >0\),

    $$\begin{aligned}&| \alpha |_{L^{{(n-1)p}/{(n-1-kp)}}} \le C(k,n,p) \sum _{i=0}^k K_1^{k-i} | \nabla ^i \alpha |_{L^{p}}, \ \ 1\le p < (n-1)/k, \end{aligned}$$
    (A-2a)
    $$\begin{aligned}&| \alpha |_{L^{\infty }} \le \delta | \nabla ^k \alpha |_{L^{p}} + C(\delta ^{-1}, K_1, k, n,p) \sum _{i=0}^{k-1} | \nabla ^i \alpha |_{L^{p}}, \ \ p>(n-1)/k, \end{aligned}$$
    (A-2b)
    $$\begin{aligned}&\Vert \alpha \Vert _{L^{{np}/{(n-kp)}}} \le C(k,n,p) \sum _{i=0}^k K_1^{k-i} \Vert \nabla ^i \alpha \Vert _{L^{p}}, \ \ 1\le p < n/k, \end{aligned}$$
    (A-2c)
    $$\begin{aligned}&\Vert \alpha \Vert _{L^{\infty }} \le C(k,n,p) \sum _{i=0}^k K_1^{k-i} \Vert \nabla ^i \alpha \Vert _{L^{p}}, \ \ p > n/k. \end{aligned}$$
    (A-2d)

Lemma A-2

(Lemmas 5.5-5.6 in [11]) Let w be a (0, 1) tensor and define a scalar \(\mathrm{div} w=g^{ab}\nabla _a w_b\) and a (0, 2) tensor \(\mathrm{curl} w_{ab}=\nabla _a w_b -\nabla _b w_a\). If \(|\theta |+1/\iota _0\le K\), then for any nonnegative integer r,

$$\begin{aligned} |\nabla ^{r+1} w|^2&\le C\left( g^{ij} \zeta ^{kl} \zeta ^{IJ} (\nabla _k \nabla ^r_I w_i) \nabla _l \nabla ^r_J w_j + |\nabla ^ r \mathrm{div} w|^2 + |\nabla ^r \mathrm{curl} w|^2 \right) , \end{aligned}$$
(A-3a)
$$\begin{aligned} \Vert \nabla ^{r+1} w\Vert _{L^2}^2&\le C\int _{\Omega } \widetilde{N}^i\widetilde{N}^j g^{kl} \zeta ^{IJ} (\nabla _k\nabla ^{r }_I w_i)\nabla _l\nabla ^{r }_J w_j {\mathrm{d}}\mu _g \nonumber \\&\qquad \quad + C\left( \Vert \nabla ^{r}\mathrm{div} w\Vert _{L^2}^2 + \Vert \nabla ^{r}\mathrm{curl} w\Vert _{L^2}^2 + K^2 \Vert \nabla ^{r} w\Vert _{L^2}^2 \right) ,\end{aligned}$$
(A-3b)
$$\begin{aligned} | \nabla ^r w |_{L^2}^2&\le C \left( \Vert \nabla ^{r+1}w\Vert _{L^2} + K \Vert \nabla ^r w\Vert _{L^2} \right) \Vert \nabla ^r w\Vert _{L^2},\end{aligned}$$
(A-3c)
$$\begin{aligned} | \nabla ^r w |_{L^2}^2&\le C| \Pi \nabla ^r w |_{L^2}^2 + C\left( \Vert \nabla ^{r}\mathrm{div} w\Vert _{L^2} + \Vert \nabla ^{r}\mathrm{curl} w\Vert _{L^2} + K \Vert \nabla ^r w\Vert _{L^2} \right) \Vert \nabla ^r w\Vert _{L^2},\end{aligned}$$
(A-3d)
$$\begin{aligned} \Vert \nabla ^{r+1} w\Vert _{L^2}^2&\le C| \nabla ^{r+1} w |_{L^2} | \nabla ^{r} w |_{L^2} + C\left( \Vert \nabla ^{r}\mathrm{div} w\Vert _{L^2}^2 + \Vert \nabla ^{r}\mathrm{curl} w\Vert _{L^2}^2 \right) ,\end{aligned}$$
(A-3e)
$$\begin{aligned} \Vert \nabla ^{r+1} w\Vert _{L^2}^2&\le C| \Pi \nabla ^{r+1} w |_{L^2} | \Pi (N^i \nabla ^{r} w_i) |_{L^2} \nonumber \\&\qquad \quad + C\left( \Vert \nabla ^{r}\mathrm{div} w\Vert _{L^2}^2 + \Vert \nabla ^{r}\mathrm{curl} w\Vert _{L^2}^2 + K^2 \Vert \nabla ^{r} w\Vert _{L^2}^2 \right) ,\end{aligned}$$
(A-3f)
$$\begin{aligned} \Vert \nabla ^{r+1} w\Vert _{L^2}^2&\le C| \Pi (N^i \nabla ^{r+1} w_i) |_{L^2}| \Pi \nabla ^{r} w |_{L^2} \nonumber \\&\qquad \quad + C\left( \Vert \nabla ^{r}\mathrm{div} w\Vert _{L^2}^2 + \Vert \nabla ^{r}\mathrm{curl} w\Vert _{L^2}^2 + K^2 \Vert \nabla ^{r} w\Vert _{L^2}^2 \right) . \end{aligned}$$
(A-3g)

Indeed, the proof of (A-3a)–(A-3b) can also be found in [36]. The proof of (A-3c)–(A-3g) are based on the divergence theorem, and (A-3f)–(A-3g) are based additionally on (A-3b).

Lemma A-3

(Lemma A.5 in [11]) Suppose that \(q=0\) on \(\partial \Omega \). Then

$$\begin{aligned} \Vert q\Vert _{L^2} \le C (\mathrm{Vol}\Omega )^{1/n} \Vert \nabla q \Vert _{L^2} \ \ \mathrm{and} \ \ \Vert \nabla q\Vert _{L^2} \le C (\mathrm{Vol}\Omega )^{1/n} \Vert \Delta q \Vert _{L^2} . \end{aligned}$$
(A-4)

As a consequence of Lemmas A-2 and A-3, we have

Corollary A-4

Let \(q=q_b\) on \(\partial \Omega \) with \(q_b\) being a constant. If \(|\theta |+1/\iota _0\le K\), we have for any \(r\ge 2\) and \(\delta >0\),

$$\begin{aligned}&\Vert q-q_b\Vert _{L^2} \le C(\mathrm{Vol}\Omega )^{1/n} \Vert \nabla q\Vert _{L^2} , \ \ \Vert \nabla q\Vert _{L^2} + \Vert \nabla ^2 q\Vert _{L^2} \le C(K, \mathrm{Vol}\Omega ) \Vert \Delta q\Vert _{L^2} , \end{aligned}$$
(A-5a)
$$\begin{aligned}&\Vert \nabla ^r q\Vert _{L^2} + | \nabla ^r q |_{L^2} \le C| \Pi \nabla ^r q |_{L^2} + C(K, \mathrm{Vol}\Omega ) \sum _{s=0}^{r-1} \Vert \nabla ^s \Delta q \Vert _{L^2} , \end{aligned}$$
(A-5b)
$$\begin{aligned}&\Vert \nabla ^r q\Vert _{L^2} + | \nabla ^{r-1} q |_{L^2} \le \delta | \Pi \nabla ^r q |_{L^2} + C(\delta ^{-1}, K, \mathrm{Vol}\Omega ) \sum _{s=0}^{r-2} \Vert \nabla ^s \Delta q \Vert _{L^2} . \end{aligned}$$
(A-5c)

Clearly, (A-5a) is a consequence of (A-4) and (A-3g). The proof of (A-5b) and (A-5c) can be found in Proposition 5.8, [11]. (Indeed, (A-5b) follows from (A-3c)–(A-3e) and (A-4), and (A-5c) follows from (A-3c), (A-3e), (A-3f) and (A-4).)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, T., Zeng, H. On the Free Surface Motion of Highly Subsonic Heat-Conducting Inviscid Flows. Arch Rational Mech Anal 240, 877–926 (2021). https://doi.org/10.1007/s00205-021-01624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01624-9

Navigation