Skip to main content
Log in

Bifurcation of Symmetric Domain Walls for the Bénard–Rayleigh Convection Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove the existence of domain walls for the Bénard–Rayleigh convection problem. Our approach relies upon a spatial dynamics formulation of the hydrodynamic problem, a center manifold reduction, and a normal forms analysis of an eight-dimensional reduced system. Domain walls are constructed as heteroclinic solutions connecting suitably chosen periodic solutions of this reduced system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. If \(k/k_y\in {\mathbb {N}}\), then the linear operator has an additional eigenvalue 0 which is geometrically triple. This situation is excluded from our bifurcation analysis.

  2. For our purposes, we do not need the explicit formulas for \(n>1\).

  3. It turns out that this condition is necessary and sufficient.

References

  1. Bodenschatz, E., Pesch, W., Ahlers, G.: Recent development in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 32, 709–778, 2000

    Article  ADS  Google Scholar 

  2. Braaksma, B., Iooss, G.: Existence of bifurcating quasipatterns in steady Bénard-Rayleigh convection. Arch. Rat. Mech. Anal. 231, 1917–1981, 2019

    Article  Google Scholar 

  3. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs on Physics. Clarendon Press, Oxford 1961

    MATH  Google Scholar 

  4. Dennin, M., Ahlers, G., Cannell, D.S.: Spatiotemporal chaos in electroconvection. Science 272, 388, 1996

    Article  ADS  Google Scholar 

  5. Dieudonné, J.: Foundations of Modern Analysis, Pure and Applied Mathematics, vol. 10. Academic Press, New York-London 1960

    MATH  Google Scholar 

  6. Ercolani, N., Kamburov, N., Lega, J.: The phase structure of grain boundaries. Phil. Trans. R. Soc. A 376, 20170193, 2018

    Article  ADS  MathSciNet  Google Scholar 

  7. Görtler, H., Kirchgässner, K., Sorger, P.: Branching Solutions of the Bénard Problem, pp. 133–149. Problems of Hydrodynamics and Continuum Mechanics. NAUKA, Moscow, 1969

  8. Haragus, M., Iooss, G.: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems. Universitext. Springer, London, EDP Sciences, Les Ulis, 2011

  9. Haragus, M., Scheel, A.: Dislocations in an anisotropic Swift-Hohenberg equation. Commun. Math. Phys. 315, 311–335, 2012

    Article  ADS  MathSciNet  Google Scholar 

  10. Haragus, M., Scheel, A.: Grain boundaries in the Swift-Hohenberg equation. Euro. J. Appl. Math. 23, 737–759, 2012

    Article  MathSciNet  Google Scholar 

  11. Hu, Y.-C., Ecke, R., Ahlers, G.: Convection for Prandtl numbers near \(1\): Dynamics of textured patterns. Phys. Rev. E 51, 3263, 1995

    Article  ADS  Google Scholar 

  12. Iooss, G., Mielke, A., Demay, Y.: Theory of steady Ginzburg-Landau equation in hydrodynamic stability problems. Eur. J. Mech. B/Fluids 8, 229–268 1989

  13. Iooss, G., Pérouème, M.C.: Perturbed homoclinic solutions in reversible 1:1 resonance vector fields. J. Differ. Equ. 102, 62–88, 1993

    Article  ADS  MathSciNet  Google Scholar 

  14. Joseph, D.D.: Stability of Fluid Motions I and II. Springer Tracts in Natural Philosophy 27 and 28. Springer, Berlin,1976

  15. Kirchgässner, K.: Wave-solutions of reversible systems and applications. J. Differ. Equ. 45, 113–127, 1982

    Article  ADS  MathSciNet  Google Scholar 

  16. Kirchgässner, K., Kielhofer, H.J.: Stability and bifurcation in fluid mechanics. Rocky Mt. J. Math. 3, 275–318, 1973

    Article  Google Scholar 

  17. Koschmieder, E.L.: Bénard Cells and Taylor Vortices. Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge 1993

    MATH  Google Scholar 

  18. Liu, J., Ahlers, G.: Spiral-Defect Chaos in Rayleigh-Bénard convection with small Prandtl Numbers. Phys. Rev. Lett. 77, 3126, 1996

    Article  ADS  Google Scholar 

  19. Lloyd, D.J.B., Scheel, A.: Continuation and bifurcation of grain boundaries in the swift-Hohenberg Equation. SIAM J. Appl. Dyn. Syst. 16, 252–293, 2017

    Article  MathSciNet  Google Scholar 

  20. Manneville, P.: Rayleigh-Bénard convection, thirty years of experimental, theoretical, and modeling work. In: Mutabazi, I., Guyon, E., Wesfreid, J.E. (eds.) Dynamics of Spatio-Temporal Cellular Structures. Henri Bénard Centenary Review. Springer Tracts in Modern Physics, Vol. 207, pp. 41–65 (2006)

  21. Manneville, P., Pomeau, Y.: A grain boundary in cellular sructures near the onset of convection. Philos. Mag. A 48, 607–621, 1983

    Article  ADS  Google Scholar 

  22. Pellew, A., Southwell, R.V.: On maintained convection motion in a fluid heated from below. Proc. R. Soc. A 176, 312–343, 1940

    ADS  MATH  Google Scholar 

  23. Rabinowitz, P.H.: Existence and nonuniqueness of rectangular solutions of the Bénard problem. Arch. Rat. Mech. Anal. 29, 32–57, 1968

    Article  Google Scholar 

  24. Rabinowitz, P.H.: Periodic and heteroclinic orbits for a hamiltonian system. Ann. Inst. H. Poincaré Anal. Nonl. 6, 331–346, 1989

    Article  MathSciNet  Google Scholar 

  25. Sattinger, D.H.: Group Representation Theory, Bifurcation Pattern Formation. J. Funct. Anal. 28, 58–101, 1978

    Article  MathSciNet  Google Scholar 

  26. Scheel, A., Wu, Q.: Small-amplitude grain boundaries of arbitrary angle in the Swift-Hohenberg equation. Z. Angew. Math. Mech. 94, 203–232, 2014

    Article  MathSciNet  Google Scholar 

  27. Ukhovskii, M.R., Yudovich, V.I.: On the equations of steady state convection. J. Appl. Math. Mech. 27, 432–440, 1963

    Article  MathSciNet  Google Scholar 

  28. van den Berg, G.J.B., van der Vorst, R.C.A.M.: A domain-wall between single-mode and bimodal states. Differ. Integral Equ. 13, 369–400, 2000

    MathSciNet  MATH  Google Scholar 

  29. Yudovich, V.I.: Secondary flows and fluid instability between rotating cylinders. J. Appl. Math. Mech. 30, 822–833, 1966

    Article  MathSciNet  Google Scholar 

  30. Yudovich, V.I.: On the origin of convection. J. Appl. Math. Mech. 30, 1193–1199, 1966

    Article  Google Scholar 

  31. Yudovich, V.I.: Free convection and bifurcation. J. Appl. Math. Mech. 31, 103–114, 1967

    Article  Google Scholar 

  32. Yudovich, V.I.: Stability of convection flows. J. Appl. Math. Mech. 31, 294–303, 1967

    Article  Google Scholar 

Download references

Acknowledgements

M.H. was partially supported by the EUR EIPHI program (Contract No. ANR-17-EURE-0002). The authors thank the referee for the careful reading of the manuscript and the constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Haragus.

Additional information

Communicated by P. Rabinowitz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Some Properties of Linear Operators

1.1 Adjoint Operator

The explicit, but not so obvious, expression of the adjoint of operator \({\mathcal {L}}_{\mu }\) given below is necessary for computing the algebraic multiplicities of eigenvalues and the coefficients of the normal form.

Denote by \(\langle \cdot ,\cdot \rangle \) the scalar product in \( (L_{per}^{2}(\Omega ))^{8}\) and consider the closed subspace

$$\begin{aligned}&{\mathcal {H}}_0 = \big \{{\mathbf {U}}=(V_x,V_\bot ,W_x,W_\bot ,\theta ,\phi )\in (L_{per}^{2}(\Omega ))^{8} \;;\\&\int _{\Omega _{per}}V_{x}\,dy\,dz=0\big \} \subset (L_{per}^{2}(\Omega ))^{8}, \end{aligned}$$

which is the closure in \((L_{per}^{2}(\Omega ))^{8}\) of both \({\mathcal {X}}\) and the domain of definition \({\mathcal {Z}}\) of the operator \({\mathcal {L}}_\mu \) . We compute the adjoint \({\mathcal {L}} _{\mu }^{*}\) of \({\mathcal {L}}_{\mu } \) from the scalar product \(\langle {\mathcal {L}}_{\mu }\mathbf {U,U}^{\prime }\rangle \), for \({\mathbf {U}}\in {\mathcal {Z}}\), and choose \({\mathbf {U}}^{\prime }\in {\mathcal {H}}_0\) such that \({\mathbf {U}}\mapsto \langle {\mathcal {L}}_{\mu } \mathbf {U,U}^{\prime }\rangle \) is a linear continuous form on \({\mathcal {H}} _0 \). We obtain the linear operator

$$\begin{aligned} {\mathcal {L}}_{\mu }^{*}\mathbf {U=}\left( \begin{array}{c} -\mu ^{-1}\left( \Delta _{\bot }W_{x} -\langle \Delta _{\bot }W_{x}\rangle \right) \\ \nabla _{\bot }V_{x}-\mu ^{-1}\Delta _{\bot }W_{\bot }-\mu ^{-1}\nabla _{\bot }(\nabla _{\bot }\cdot W_{\bot })-\mu \phi {\mathbf {e}}_{z} \\ \nabla _{\bot }\cdot W_{\bot } \\ \mu V_{\bot } \\ -W_{z}-\Delta _{\bot }\phi \\ \theta \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} \langle \Delta _{\bot }W_{x}\rangle =\int _{\Omega _{per}}\Delta _{\bot }W_{x}(y,z)\,dy\,dz. \end{aligned}$$

The operator \({\mathcal {L}}_\mu ^*\) is closed in the space \({\mathcal {X}}^{*}\) defined by

$$\begin{aligned} {\mathcal {X}}^{*}=\big \{{\mathbf {U}}\in (L_{per}^{2}(\Omega ))^{3}\times (H_{per}^{1}(\Omega ))^{3}\times L_{per}^{2}(\Omega )\times H_{per}^{1}(\Omega )\;;\;&\\ W_{x}=W_{\bot }=\phi =0\text { on }z=0,1,\text { and } \int _{\Omega _{per}}V_{x}\,dy\,dz=0\big \},&\end{aligned}$$

with domain

$$\begin{aligned}&{\mathcal {Z}}^{*}=\big \{{\mathbf {U}}\in {\mathcal {X}}^{*}\cap (H_{per}^{1}(\Omega ))^{3}\times (H_{per}^{2}(\Omega ))^{3}\times H_{per}^{1}(\Omega )\times H_{per}^{2}(\Omega )\;;\; \\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~V_{\bot }=\nabla _{\bot }\cdot W_{\bot }=\theta =0\text { on }z=0,1\big \}. \end{aligned}$$

The adjoint operator \({\mathcal {L}}_{\mu }^{*}\) has the same center spectrum as the operator \({\mathcal {L}}_{\mu }\). For our purposes we need to compute its kernel, an eigenvector associated with the eigenvalue \(-ik\) of \( {\mathcal {L}}_{\mu _0(k)}^*\), and one of the eigenvectors associated with the eigenvalue \(-ik_{x}\) of \({\mathcal {L}} _{\mu _{c}}^{*}\). The kernel of \( {\mathcal {L}}_{\mu }^{*}\) is easily computed by solving the equation \( {\mathcal {L}}_\mu ^*{\mathbf {U}}=0\), and we find that it is spanned by the vector

$$\begin{aligned} \varvec{\varphi }_{0}^*=\left( 0,0,0, z(1-z),0,0,0,0,\right) ^{t}. \end{aligned}$$

We use this vector in the computation of the coefficients of the cubic normal form in “Appendix B.2”.

Next, for \(\mu =\mu _0(k)\), the operator \({\mathcal {L}}_{\mu _0(k)}^*\) has the geometrically simple eigenvalues \(\pm ik\), just as the operator \({\mathcal {L}} _{\mu _0(k)}\). In “Appendix A.2” we need the expression of an eigenvector \({{\varvec{\Psi }}}_{k,0}^{*}\) associated with the eigenvalue \( -ik\). A direct calculation gives

$$\begin{aligned} {{\varvec{\Psi }}}_{k,0}^{*}(y,z)=\widehat{{\varvec{\Psi }}}_{k,0}^{*}(z), \quad \widehat{{\varvec{\Psi }}}_{k,0}^{*}(z)=\left( \begin{array}{c} -\frac{1}{\mu _{0}(k)k^{2}}\left( D^{3}V_{k}-\langle D^{3}V_{k}\rangle \right) \\ 0 \\ \frac{ik}{\mu _{0}(k)}V_{k} \\ -\frac{i}{k}DV_{k} \\ 0 \\ -V_{k} \\ -ik\phi _{k} \\ \phi _{k} \end{array} \right) , \end{aligned}$$
(A.1)

where

$$\begin{aligned} \langle D^3V_k\rangle =\int _{\Omega _{per}}D^3V_k(z)\,dy\,dz, \end{aligned}$$

\(V_{k}\) is the solution of the boundary value problem (4.10), and \( \phi _k\) is the unique solution of the boundary value problem

$$\begin{aligned} (D^{2}-k^{2})\phi _k=V_k ,\quad \phi _k |_{z=0,1}=0. \end{aligned}$$

Notice that the function \(\phi _k\) is related to the function \(\theta \) in the boundary value problem (2.4)–(2.5) through the equality \(\theta =-\mu _0(k)\phi _k\).

Finally, in the computations in “Appendix B.2” we also need an eigenvector associated with the eigenvalue \(-ik_{x}\) of \({\mathcal {L}} _{\mu _{c}}^{*}\) which is of the form

$$\begin{aligned} {\varvec{\Psi }}_{+}^{*}(y,z)=\widehat{{\varvec{\Psi }}}_{+}^{*}(z)e^{ik_{y}y}. \end{aligned}$$

We obtain that

$$\begin{aligned} \widehat{{\varvec{\Psi }}}_{+}^{*}(z)=\left( \begin{array}{c} -\frac{1}{\mu _{c}k_{c}^{2}} (D^{2}-k_{c}^{2}\cos ^{2}\alpha )DV \\ -\frac{\sin \alpha \cos \alpha }{\mu _{c}}DV \\ \frac{ik_{c}\sin \alpha }{\mu _{c}}V \\ -\frac{i\sin \alpha }{k_{c}}DV \\ -\frac{i\cos \alpha }{k_{c}}DV \\ -V \\ -ik_{c}(\sin \alpha )\phi \\ \phi \end{array} \right) , \end{aligned}$$

where V is the solution of the boundary value problem (4.15), and \( \phi \) is the unique solution of the boundary value problem

$$\begin{aligned} (D^{2}-k_{c}^{2})\phi =V ,\quad \phi |_{z=0,1}=0. \end{aligned}$$
(A.2)

1.2 Algebraic Multiplicities of \(\varvec{\pm ik}\) and \(\varvec{\pm i\omega _1(k)}\)

Consider the geometrically simple eigenvalues \(\pm ik\) and the geometrically double eigenvalues \(\pm i\omega _1(k)\) of the operator \({\mathcal {L}}_{\mu _{0}(k)}\) given in Lemma 4.1. We assume that \(\mu _0'(k)\not =0\), and show that the algebraic multiplicities of these eigenvalues are equal to their geometric multiplicities. We prove the result for the eigenvalue ik, the arguments being the same for the eigenvalue \( i\omega _{1}(k)\).

Assuming that the algebraic multiplicity of the eigenvalue ik is larger than its geometric multiplicity, there exists a vector \({{\varvec{\Psi }}}_{k,0}\) such that

$$\begin{aligned} ({\mathcal {L}}_{\mu _{0}(k)}-ik){{\varvec{\Psi }}}_{k,0}= {\mathbf {U}}_{k,0}. \end{aligned}$$
(A.3)

Differentiating the eigenvalue problem

$$\begin{aligned} {\mathcal {L}}_{\mu _{0}(k)}{{\mathbf {U}}}_{k,0}=ik{{\mathbf {U}}}_{k,0} \end{aligned}$$

with respect to k leads to the equality

$$\begin{aligned} ({\mathcal {L}}_{\mu _{0}(k)}-ik)\left( \frac{d}{dk}{\mathbf {U}} _{k,0}\right) =\left( i-\mu _{0}^{\prime }(k)\,\frac{\partial }{\partial \mu }{{\mathcal {L}} _{\mu }\big |_{\mu =\mu _{0}(k)}}\right) {{\mathbf {U}}} _{k,0}. \end{aligned}$$

Since \(\mu _{0}^{\prime }(k)\ne 0\), this identity and the equality (A.3) imply that there is a solution \({\mathbf { \Phi }}_{k,0}\) of the linear equation

$$\begin{aligned} ({\mathcal {L}}_{\mu _{0}(k)}-ik){\varvec{\Phi }}_{k,0}=\frac{ \partial }{ \partial \mu }{{\mathcal {L}}_{\mu }\big |_{\mu =\mu _{0}(k)}} {{\mathbf {U}}} _{k,0}. \end{aligned}$$
(A.4)

As a consequence, the vector in the right hand side of the above equation is orthogonal to the kernel of the adjoint operator \(({\mathcal {L}}_{\mu _{0}(k)}^{*}+ik)\), and in particular to the eigenvector \({{\varvec{\Psi }}}_{k,0}^{*}\) given by (A.1). A direct computation shows that their scalar product is equal to the positive number

$$\begin{aligned} \frac{1}{\mu _{0}^{2}(k)k^{2}}\left( \Vert D^{2}V_{k}\Vert ^{2}+2k^{2}\Vert DV_{k}\Vert ^{2}+k^{4}\Vert V_{k}\Vert ^{2}\right) +\Vert D\phi _{k}\Vert ^{2}+k^{2}\Vert \phi _{k}\Vert ^{2}>0. \end{aligned}$$

This contradicts the orthogonality condition, and proves that the algebraic multiplicity of the eigenvalue ik is equal to its geometric multiplicity.

Cubic Normal Form

1.1 Proof of Lemma 6.1

Proof

The existence of the polynomial \({\varvec{P}}_{\varepsilon }\) and the first two properties in Lemma 6.1 follow from the general normal form theorems in [8, Sections 3.2.1, 3.3.1, and 3.3.2]. In addition, \(N(\cdot ,\cdot ,\varepsilon )\) is an odd polynomial of degree 3 such that \(N(0,0,\varepsilon )=0\) and the identity

$$\begin{aligned} D_{Z}N(Z,{\overline{Z}},\varepsilon )L_{0}^{*}Z+D_{{\overline{Z}}}N(Z, {\overline{Z}},\varepsilon )\overline{L_{0}^{*}}{\overline{Z}}=L_{0}^{*}N(Z,{\overline{Z}},\varepsilon ), \end{aligned}$$
(B.1)

in which \(L_{0}^{*}\) is the adjoint of \(L_{0}\), holds for any \(Z\in {\mathbb {C}}^{4}\) and \(\varepsilon \in {\mathcal {V}}_{2}\). We write

$$\begin{aligned} N(Z,{\overline{Z}},\varepsilon )=N_{1}(Z,{\overline{Z}})\varepsilon +N_{3}(Z, {\overline{Z}}), \end{aligned}$$

where \(N_{1}\) and \(N_{3}\) denote the linear and cubic terms, respectively, of N. It is now straightforward to check that the linear part \(N_{1}\) has the form in Lemma 6.1 (iii), and it remains to check the cubic terms \(N_{3}\).

We set \(N_{3}=({{\widetilde{N}}}_{+},{{\widetilde{M}}}_{+},\widetilde{N}_{-},{{\widetilde{M}}}_{-})\). Then the identity (B.1) becomes

$$\begin{aligned}&({\mathcal {D}}^{*}+ik_{x}){{\widetilde{N}}}_{+}=0,\quad ({\mathcal {D}}^{*}+ik_{x}){{\widetilde{M}}}_{+}={{\widetilde{N}}}_{+}, \\&({\mathcal {D}}^{*}+ik_{x}){{\widetilde{N}}}_{-}=0,\quad ({\mathcal {D}}^{*}+ik_{x}){{\widetilde{M}}}_{-}={{\widetilde{N}}}_{-}, \end{aligned}$$

in which

$$\begin{aligned} {\mathcal {D}}^{*}= & {} -ik_{x}A_{+}\frac{\partial }{\partial A_{+}} +(A_{+}-ik_{x}B_{+})\frac{\partial }{\partial B_{+}}-ik_{x}A_{-}\frac{ \partial }{\partial A_{-}}+(A_{-}-ik_{x}B_{-})\frac{\partial }{\partial B_{-} } \\&+ik_{x}\overline{A_{+}}\frac{\partial }{\partial \overline{A_{+}}}+( \overline{A_{+}}+ik_{x}\overline{B_{+}})\frac{\partial }{\partial \overline{ B_{+}}}+ik_{x}\overline{A_{-}}\frac{\partial }{\partial \overline{A_{-}}}+( \overline{A_{-}}+ik_{x}\overline{B_{-}})\frac{\partial }{\partial \overline{ B_{-}}}. \end{aligned}$$

Due to the equivariance of the normal form under the action of the symmetry \( {\mathbf {S}}_{2}\), it is enough to determine \((\widetilde{N}_{+},{{\widetilde{M}}}_{+})\), the components \((\widetilde{N}_{-},{{\widetilde{M}}}_{-})\) being obtained by switching the indices \(+\) and − in the expressions of \(({{\widetilde{N}}}_{+},{{\widetilde{M}}}_{+})\).

Cubic monomials are of the form

$$\begin{aligned} A_{+}^{p_{+}}\overline{A_{+}}^{q_{+}}B_{+}^{r_{+}}\overline{B_{+}}^{s_{+}} A_{-}^{p_{-}}\overline{A_{-}}^{q_{-}}B_{-}^{r_{-}}\overline{B_{-}}^{s_-}, \end{aligned}$$

with nonnegative exponents such that

$$\begin{aligned} p_{+}+q_{+}+r_{+}+s_{+}+p_{-}+q_{-}+r_{-}+s_{-}=3. \end{aligned}$$
(B.2)

We claim that the cubic monomials in \({{\widetilde{N}}}_+\) and \({{\widetilde{M}}}_+\) also satisfy

$$\begin{aligned} S_{\pm }=p_{+}-q_{+}+r_{+}-s_{+}+p_{-}-q_{-}+r_{-}-s_{-}=1. \end{aligned}$$
(B.3)

Indeed, for any monomial as above, we have

$$\begin{aligned}&{\mathcal {D}}^{*}\left( A_{+}^{p_{+}}\overline{A_{+}} ^{q_{+}}B_{+}^{r_{+}}\overline{B_{+}}^{s_{+}}A_{-}^{p_{-}}\overline{A_{-}} ^{q_{-}}B_{-}^{r_{-}}\overline{B_{-}^{s_-}}\right) = \\&-ik_{x} S_{\pm } A_{+}^{p_{+}}\overline{A_{+}}^{q_{+}}B_{+}^{r_{+}}\overline{B_{+}} ^{s_{+}}A_{-}^{p_{-}}\overline{A_{-}}^{q_{-}}B_{-}^{r_{-}}\overline{B_{-}} ^{s_-} \\&+ r_+ A_{+}^{p_{+}+1}\overline{A_{+}}^{q_{+}}B_{+}^{r_{+}-1}\overline{ B_{+}} ^{s_{+}}A_{-}^{p_{-}}\overline{A_{-}}^{q_{-}}B_{-}^{r_{-}}\overline{ B_{-}}^{s_-} \\&+s_+ A_{+}^{p_{+}}\overline{A_{+}}^{q_{+}+1}B_{+}^{r_{+}}\overline{B_{+}} ^{s_{+}-1}A_{-}^{p_{-}}\overline{A_{-}}^{q_{-}}B_{-}^{r_{-}}\overline{B_{-}} ^{s_-} \\&+ r_- A_{+}^{p_{+}}\overline{A_{+}}^{q_{+}}B_{+}^{r_{+}}\overline{B_{+}} ^{s_{+}}A_{-}^{p_{-}+1}\overline{A_{-}}^{q_{-}}B_{-}^{r_{-}-1}\overline{B_{-} }^{s_-} \\&+s_- A_{+}^{p_{+}}\overline{A_{+}}^{q_{+}}B_{+}^{r_{+}}\overline{B_{+}} ^{s_{+}}A_{-}^{p_{-}}\overline{A_{-}}^{q_{-}+1}B_{-}^{r_{-}}\overline{B_{-}} ^{s_--1}, \end{aligned}$$

implying that the subspace of monomials for which the sum in the left hand side of (B.3) is constant is invariant under the action of \( {\mathcal {D}}^*\). Ordering the monomials by decreasing exponents \(p_+\), \(q_+\), \(r_+\), \(s_+\), \(p_-\), \(q_-\), \(r_-\), and \(s_-\), this action is represented by a lower triangular matrix with equal elements on the diagonal given by \(-ik_xS_{\pm }.\)

Consequently, the polynomials \({{\widetilde{N}}}_+\) and \({{\widetilde{M}}}_+\), which belong to the kernel and generalized kernel of \({\mathcal {D}}_*+ik_x\), respectively, belong to the subspace for which (B.3) holds. This proves the claim. Furthermore, the commutativity of \(N_{3}\) and \(\varvec{ \tau }_{a}\), implies that monomials in \(({{\widetilde{N}}}_{+},{{\widetilde{M}}}_{+})\) also satisfy

$$\begin{aligned} p_{+}-q_{+}+r_{+}-s_{+}-p_{-}+q_{-}-r_{-}+s_{-}=1. \end{aligned}$$
(B.4)

Collecting all possible monomials in \(({\widetilde{N}}_{+},{\widetilde{M}}_{+})\) for which the conditions (B.2)–(B.4) hold, we compute

$$\begin{aligned}&({\mathcal {D}}^{*}+ik_{x})(A_{+}^{2}\overline{A_{+}})=0, \\&({\mathcal {D}}^{*}+ik_{x})(A_{+}^{2}\overline{B_{+}})=({\mathcal {D}}^{*}+ik_{x})(A_{+}\overline{A_{+}}B_{+})=A_{+}^{2}\overline{A_{+}}, \\&({\mathcal {D}}^{*}+ik_{x})(A_{+}B_{+}\overline{B_{+}})=A_{+}^{2} \overline{B_{+}}+A_{+}\overline{A_{+}}B_{+},\\&({\mathcal {D}}^{*}+ik_{x})(\overline{A_{+}}B_{+}^{2})=2A_{+}\overline{A_{+}}B_{+}, \\&({\mathcal {D}}^{*}+ik_{x})(B_{+}^{2}\overline{B_{+}})=2A_{+}B_{+} \overline{B_{+}}+\overline{A_{+}}B_{+}^{2}, \end{aligned}$$

and

$$\begin{aligned}&({\mathcal {D}}^{*}+ik_{x})(A_{+}A_{-}\overline{A_{-}})=0, \\&({\mathcal {D}}^{*}+ik_{x})(A_{+}A_{-}\overline{B_{-}})=({\mathcal {D}} ^{*}+ik_{x})(A_{+}\overline{A_{-}}B_{-})\\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=({\mathcal {D}}^{*}+ik_{x})(B_{+}A_{-}\overline{A_{-}})=A_{+}A_{-}\overline{A_{-}} \\&({\mathcal {D}}^{*}+ik_{x})(A_{+}B_{-}\overline{B_{-}})=A_{+}A_{-} \overline{B_{-}}+A_{+}\overline{A_{-}}B_{-}, \\&({\mathcal {D}}^{*}+ik_{x})(B_{+}A_{-}\overline{B_{-}})=A_{+}A_{-} \overline{B_{-}}+B_{+}A_{-}\overline{A_{-}}, \\&({\mathcal {D}}^{*}+ik_{x})(B_{+}\overline{A_{-}}B_{-})=A_{+}\overline{ A_{-}}B_{-}+B_{+}A_{-}\overline{A_{-}}, \\&({\mathcal {D}}^{*}+ik_{x})(B_{+}B_{-}\overline{B_{-}})=A_{+}B_{-} \overline{B_{-}}+B_{+}A_{-}\overline{B_{-}}+B_{+}\overline{A_{-}}B_{-}. \end{aligned}$$

Since \({\widetilde{N}}_{+}\) and \({\widetilde{M}}_{+}\) are necessarily linear combinations of these 14 monomials, the equalities above imply that they are of the form

$$\begin{aligned} {\widetilde{N}}_{+}= & {} A_{+}{\widetilde{P}}_{+}(u_{1},u_{2},u_{3},u_{4})+A_{-} {\widetilde{R}}_{+}(u_{5}), \\ {\widetilde{M}}_{+}= & {} B_{+}{\widetilde{P}}_{+}(u_{1},u_{2},u_{3},u_{4})+B_{-} {\widetilde{R}}_{+}(u_{5})\\&+A_{+}{\widetilde{Q}} _{+}(u_{1},u_{2},u_{3},u_{4})+A_{-}{\widetilde{S}}_{+}(u_{5}), \end{aligned}$$

with \({\widetilde{P}}_{+},{\widetilde{R}}_{+},{\widetilde{Q}}_{+},{\widetilde{S}} _{+} \) linear in their arguments, which are the quadratic expressions

$$\begin{aligned}&u_{1}=A_{+}\overline{A_{+}},\quad u_{2}=i(A_{+}\overline{B_{+}}-\overline{ A_{+}}B_{+}),\quad u_{3}=A_{-}\overline{A_{-}}, \\&u_{4}=i(A_{-}\overline{B_{-}}-\overline{A_{-}}B_{-}),\quad u_{5}=(A_{+} \overline{B_{-}}-\overline{A_{-}}B_{+}). \end{aligned}$$

This proves the expressions of the cubic terms of \(N_{+}\) and \(M_{+}\) in (iii). Finally, taking into account the action of the reversibility \( {\mathbf {S}}_{1}\), it is straightforward to check that the coefficients \(\beta _{j}\), \(b_{j}\), \(\gamma _{5}\), and \(c_{5}\) are real. \(\quad \square \)

1.2 Computation of the Quotient \(\varvec{g=b_3/b_1}\)

For the computation of the coefficients \(b_1\) and \(b_3\), we follow the method in [8, Section 3.4.1]. We restrict to the 8-dimensional center manifold

$$\begin{aligned} {\mathcal {M}}_{\pm }(\varepsilon )=\{{\mathbf {U}}_{c}+\varvec{\Phi }({\mathbf {U}}_{c},\varepsilon )\;;\;{\mathbf {U}}_{c}\in E_\pm \} . \end{aligned}$$

Recall that solutions on this submanifold are invariant under the action of \( {\mathbf {S}}_3\varvec{\tau }_\pi \). Combining the transformations from the center manifold reduction in Sect. 5.1 and the normal form in Lemma 6.1, we write

$$\begin{aligned} {\mathbf {U}}= & {} A_{+}\varvec{\zeta }_{+}+B_{+}{\varvec{\Psi }}_{+}+A_{-} \varvec{\zeta }_{-}+B_{-}{\varvec{\Psi }}_{-} +\,\overline{A_{+} \varvec{\zeta }_{+}}+\overline{B_{+}{\varvec{\Psi }}_{+}}+\overline{A_{-} \varvec{\zeta }_{-}}+\overline{B_{-}{\varvec{\Psi }}_{-}} \\&+\,\widetilde{\varvec{\Phi }}(A_{+}, B_{+},A_{-}, B_{-}, \overline{ A_{+} }, \overline{B_{+}},\overline{A_{-}}, \overline{B_{-}},\varepsilon ), \end{aligned}$$

in which \(Z=(A_{+}, B_{+},A_{-}, B_{-})\) satisfies the normal form (6.4). Substituting \({\mathbf {U}}\) given by this formula in the dynamical system (3.3), and using the expressions of the derivatives of \(A_{+}\), \(B_{+}\), \(A_{-}\), \(B_{-}\) given by the normal form in Lemma 6.1, we obtain an equality for the variables \(A_{+}\), \(B_{+}\), \(A_{-}\), \(B_{-}\) and their complex conjugates. We find the coefficients of the normal form, and in particular \(b_1\) and \( b_3 \), by identifying the coefficients of suitably chosen monomials in this equality.

We denote by \(\varvec{\Phi }_{rstu}\) the coefficient of the monomial \( A_{+}^{r}\overline{A_{+}}^{s}A_{-}^{t}\overline{A_{-}}^{u}\) in the expansion of \(\widetilde{\varvec{\Phi }}\). Identifying successively the coefficients of the monomials \(A_{+}^{2}\overline{A_{+}}\), \(A_{+}A_{-} \overline{A_{-}}\), and then \(A_+^2\), \(A_+\overline{A_+}\), \(A_+A_-\), \(A_+ \overline{A_-}\), \(A_-\overline{A_-}\), we find the equalities

$$\begin{aligned}&i\beta _{1}\varvec{\zeta }_{+}+b_1{\varvec{\Psi }}_{+} =({\mathcal {L}} _{\mu _{c}}-ik_x )\varvec{\Phi }_{2100}+2{\mathcal {B}}_{\mu _{c}}(\varvec{\Phi }_{2000},\overline{\varvec{\zeta }_{+}})+2{\mathcal {B}}_{\mu _{c}}({{\varvec{\Phi }} }_{1100},\varvec{\zeta }_{+}), \\&i\beta _{3}\varvec{\zeta }_{+}+b_3{\varvec{\Psi }}_{+} =({\mathcal {L}} _{\mu _{c}}-ik_x )\varvec{\Phi }_{1011}+2{\mathcal {B}}_{\mu _{c}}(\varvec{\Phi }_{1010},\overline{\varvec{\zeta }_{-}})\\&~~~~~~~~~~~~~~~~~~~~~~~~~~\quad +2{\mathcal {B}}_{\mu _{c}}(\mathbf { \ \Phi }_{1001},\varvec{\zeta }_{-})+ 2{\mathcal {B}}_{\mu _{c}}(\mathbf { \Phi }_{0011},\varvec{\zeta }_{+}), \end{aligned}$$

and

$$\begin{aligned}&({\mathcal {L}}_{\mu _{c}}-2ik_x )\varvec{\Phi }_{2000} =-{\mathcal {B}} _{\mu _{c}}(\varvec{\zeta }_{+},\varvec{\zeta }_{+}), \end{aligned}$$
(B.5)
$$\begin{aligned}&{\mathcal {L}}_{\mu _{c}}\varvec{\Phi }_{1100} =-2{\mathcal {B}}_{\mu _{c}}( \varvec{\zeta }_{+},\overline{\varvec{\zeta }_{+}}), \end{aligned}$$
(B.6)
$$\begin{aligned}&({\mathcal {L}}_{\mu _{c}}-2ik_x )\varvec{\Phi }_{1010} =-2{\mathcal {B}}_{\mu _{c}}(\varvec{\zeta }_{+},\varvec{\zeta }_{-}) , \end{aligned}$$
(B.7)
$$\begin{aligned}&{\mathcal {L}}_{\mu _{c}}\varvec{\Phi }_{1001} =-2{\mathcal {B}}_{\mu _{c}}( \varvec{\zeta }_{+},\overline{\varvec{\zeta }_{-}}), \end{aligned}$$
(B.8)
$$\begin{aligned}&{\mathcal {L}}_{\mu _{c}}\varvec{\Phi }_{0011} =-2{\mathcal {B}}_{\mu _{c}}( \varvec{\zeta }_{-},\overline{\varvec{\zeta }_{-}}). \end{aligned}$$
(B.9)

We determine the coefficients \(b_1\) and \(b_3\) by taking the scalar product of the first two equalities above with the vector \({\varvec{\Psi }}_{+}^{* }\) in the kernel of the adjoint operator \(({\mathcal {L}}_{\mu _{c}}-ik_x )^*\) computed in “Appendix A.1”,

$$\begin{aligned} b_1\langle {\varvec{\Psi }}_{+},{\varvec{\Psi }}_{+}^{* }\rangle= & {} \langle 2 {\mathcal {B}}_{\mu _{c}}(\varvec{\Phi }_{2000},\overline{\varvec{\zeta } _{+}})+2{\mathcal {B}}_{\mu _{c}}(\varvec{\Phi }_{1100},\varvec{\zeta } _{+}),{\varvec{\Psi }}_{+}^{* }\rangle , \end{aligned}$$
(B.10)
$$\begin{aligned} b_3\langle {\varvec{\Psi }}_{+},{\varvec{\Psi }}_{+}^{* }\rangle= & {} \langle 2 {\mathcal {B}}_{\mu _{c}}(\varvec{\Phi }_{1010},\overline{\varvec{\zeta } _{-}})+2{\mathcal {B}}_{\mu _{c}}(\varvec{\Phi }_{1001},\varvec{\zeta } _{-})\nonumber \\&+2{\mathcal {B}}_{\mu _{c}}(\varvec{\Phi }_{0011},\varvec{\zeta } _{+}), {\varvec{\Psi }}_{+}^{* }\rangle , \end{aligned}$$
(B.11)

where \(\varvec{\Phi }_{2000}\), \(\varvec{\Phi }_{1100}\), \(\varvec{\Phi }_{1010}\) , \(\varvec{\Phi }_{1001}\), and \(\varvec{\Phi }_{0011}\) are solutions of the linear equations (B.5)–(B.9).

In the equations (B.5) and (B.7), the linear operator \(( {\mathcal {L}}_{\mu _c}-2ik_x)\) is invertible, except in the case \(\alpha =\pi /6\) when \(2k_x=k_c\). Nevertheless, we only have to solve the equations in the subspace of vectors which are invariant under the action of \({\mathbf {S}}_3 \varvec{\tau }_\pi \) and the restriction of \(({\mathcal {L}}_{\mu _c}-ik_c)\) to this subspace is invertible, since its two-dimensional kernel is spanned by \(\varvec{\zeta }_0\) and \(\overline{\varvec{\zeta }_0}\) which do not belong to this subspace. Consequently, \(\varvec{\Phi }_{2000}\) and \(\mathbf { \Phi }_{1010}\) are uniquely determined. In the equations (B.6), (B.8) and (B.9), the linear operator \({\mathcal {L}}_{\mu _c}\) has a one-dimensional kernel spanned by the vector \(\varvec{\varphi }_0\) in Lemma 4.2 (i), and the kernel of its adjoint is spanned by the vector \(\varvec{\varphi }_0^*\) in “Appendix A.1”. The solvability condition is easily checked in all cases, so that we can solve these equations up to an element in the kernel of \({\mathcal {L}}_\mu \). The choice of this element in the kernel does not influence the result from (B.10)–(B.11), since \({\mathcal {B}}_\mu \) is invariant upon adding a multiple of \(\varvec{\varphi }_0\).

After long and intricate computations we obtain that

$$\begin{aligned} g=\frac{b_3}{b_1} = \frac{b_{31}(\sin ^{2}\alpha )+b_{31}(\cos ^{2}\alpha )+b_{31}(0)}{\frac{1}{2}b_{31}(1)+b_{31}(0)}, \end{aligned}$$
(B.12)

in which

$$\begin{aligned} b_{31}(\Theta ) = A_{31}(\Theta ) + B_{31}(\Theta ){\mathcal {P}}^{-1} + C_{31}(\Theta ){\mathcal {P}}^{-2}, \end{aligned}$$

with

$$\begin{aligned} A_{31}(\Theta )= & {} 2\mu _c^3 \langle (D^2-4k_c^2\Theta )^2 V_1,R_1 \rangle , \\ B_{31}(\Theta )= & {} 4\mu _c^3\Theta \left( \langle V_1,R_2 \rangle + \langle V_2,R_1 \rangle \right) , \\ C_{31}(\Theta )= & {} -\frac{2\mu _c\Theta }{k_c^2} \langle (D^2-4k_c^2\Theta ) V_2,R_2 \rangle , \end{aligned}$$

where

$$\begin{aligned} R_1= & {} VD\phi +(1-2\Theta )\phi DV,\\ R_2= & {} \left( D^2-4k_c^2(1-\Theta )\right) \left( VDV\right) -4\Theta (DV)(D^2V), \end{aligned}$$

and \(V_1\), \(V_2\) are the unique solutions of the boundary value problems

$$\begin{aligned} \begin{array}{l} (D^2-4k_c^2\Theta )^3 V_1 + 4k_c^2 \mu _c^2\Theta \, V_1=R_1, \\ V_1=DV_1=(D^{2}-4k_{c}^{2}\Theta )^{2}V_1=0\text { in }z=0,1, \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{l} (D^2-4k_c^2\Theta )^3 V_2 + 4k_c^2 \mu _c^2\Theta \, V_2=R_2, \\ V_2=(D^{2}-4k_{c}^{2}\Theta )V_2=(D^{2}-4k_{c}^{2}\Theta )DV_2=0\text { in } z=0,1, \end{array} \end{aligned}$$

respectively. Recall that V and \(\phi \) are the unique symmetric solutions of the boundary value problems (4.15) and (A.2), respectively. Notice that \(g\rightarrow 2\), as \(\alpha \rightarrow 0\), which was the value of g in the case of the Swift-Hohenberg equation in [10].

Remark B.1

In this way we can also compute the coefficient \(b_{0}\). By identifying the coefficients of the terms \(\varepsilon A_+\), and then taking the scalar product with \({\varvec{\Psi }}_{+}^{* }\) we obtain

$$\begin{aligned} b_{0}\langle {\varvec{\Psi }}_{+},{\varvec{\Psi }}_{+}^{* }\rangle =\langle {\mathcal {L}}^{(1)}\varvec{\zeta }_{+},{\varvec{\Psi }}_{+}^{* }\rangle , \end{aligned}$$

in which \({\mathcal {L}}^{(1)}\) is the derivative with respect to \(\mu \) of the operator \({\mathcal {L}}_\mu \) in (A.4) taken at \(\mu =\mu _{c}\). A direct computation gives

$$\begin{aligned} b_{0}\langle {\varvec{\Psi }}_{+},{\varvec{\Psi }}_{+}^{* }\rangle= & {} \frac{1}{\mu _{c}^{2}k_{c}^{2}}\left( \Vert D^{2}V\Vert ^{2}+2k_{c}^{2}\Vert DV\Vert ^{2}+k_{c}^{4}\Vert V \Vert ^{2}\right) \nonumber \\&+ \Vert D\phi \Vert ^{2}+k_{c}^{2}\Vert \phi \Vert ^{2}>0 , \end{aligned}$$
(B.13)

and implies that \(\langle {\varvec{\Psi }}_{+},{\varvec{\Psi }}_{+}^{* }\rangle <0\), since \(b_0<0\). We point out that it is not obvious to determine the sign of this scalar product directly from the explicit formulas of \(\mathbf { \ \Psi }_{+}\) and \({\varvec{\Psi }}_{+}^{* }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haragus, M., Iooss, G. Bifurcation of Symmetric Domain Walls for the Bénard–Rayleigh Convection Problem. Arch Rational Mech Anal 239, 733–781 (2021). https://doi.org/10.1007/s00205-020-01584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01584-6

Navigation