Skip to main content
Log in

Existence and nonuniqueness of rectangular solutions of the Bénard problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  1. Krishnamurti, R., Finite amplitude thermal convection with changing mean temperature: The stability of hexagonal flows and the possibility of finite amplitude instability. Dissertation, UCLA, 1967.

  2. Kosmieder, E.L., On convection on a uniformly heated plane. Beiträge zur Physik der Atmosphäre 39, 1–11 (1966).

    Google Scholar 

  3. Pearson, J.R.A., On convection cells induced by surface tension. J. Fluid Mech. 4, 489–500 (1958).

    Google Scholar 

  4. Chandrasekar, S., Hydrodynamic and hydromagnetic stability. Oxford University Press 1961.

  5. Malkus, W.V.R., & G. Veronis, Finite amplitude cellular convection. J. Fluid Mech. 4, 225–260 (1958).

    Google Scholar 

  6. Busse, F., Das Stabilitätsverhalten der Zellularkonvection bei endlicher Amplitude. Dissertation, University of Munich, 1962. (Translation from the German by S.H. Davis, Rand Corp., Santa Monica, Calif. 1966.)

  7. Segel, L.A., The structure of nonlinear cellular solutions of the Boussinesq equations. J. Fluid Mech. 21, 345–358 (1965).

    Google Scholar 

  8. Chorin, A.J., Numerical study of thermal convection in a fluid layer heated from below. New York University, Courant Institute of Mathematical Sciences technical report, 1966.

  9. Joseph, D.D., On the stability of the Boussinesq equations. Arch. Rational Mech. Anal. 20, 59–71 (1965).

    Google Scholar 

  10. Velte, W., Stabilitätsverhalten und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen. Arch. Rational Mech. Anal. 16, 97–125 (1964).

    Google Scholar 

  11. Velte, W., Stabilität und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen beim Taylorproblem. Arch. Rational Mech. Anal. 22, 1–14 (1966).

    Google Scholar 

  12. Iudovich, V.I., Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid. J. of Applied Math. and Mechanics (translation of PMM) 29, 527–544 (1965).

    Google Scholar 

  13. Friedrichs, R.O., & J. J. Stoker, The nonlinear boundary value problem of the buckled plate. Amer. J. Math. 63, 839–888 (1941).

    Google Scholar 

  14. Odeh, F., & I. Tadjbakhsh, Equilibrium states of elastic rings. To appear in J. Math. Anal. and Appl.

  15. Berger, M., & P. Fife, On Von Kármán'sequations and the buckling of a thin elastic plate. Bull. A.M.S. 72, 1006–1011 (1966).

    Google Scholar 

  16. Wolkowisky, J., Existence of buckled states of circular plates. To appear in Comm. Pure and Appl. Math.

  17. Berger, M., On von Kármán'sequations and the buckling of a thin elastic plate (I). The clamped plate, Bifurcation theory seminar notes. New York University, Courant Institute of Mathematical Sciences, 1967.

  18. Kolodner, I.I., Heavy rotating string — a nonlinear eigenvalue problem. Comm. Pure and Appl. Math. 8, 395–408 (1955).

    Google Scholar 

  19. Odeh, F., Existence and bifurcation theorems for the Ginzburg-Landau equations. To appear in J. Math. Phys.

  20. Ladyzhenskaya, O.A., The mathematical theory of viscous incompressible flow. New York: Gordon and Breach 1963.

    Google Scholar 

  21. Courant, R., & D. Hilbert, Methods of mathematical physics, V. 1. New York: Interscience 1953.

    Google Scholar 

  22. Kirchgässner, K., Die Instabilität der Strömung zwischen zwei rotierenden Zylindern gegenüber Taylor-Wirbeln für beliebige Spaltbreiten. Z.A.M.P. 12, 14–30 (1961).

    Google Scholar 

  23. Karlin, S., Total positivity and applications V.I. Stanford Univ. Press, Stanford, Calif., to appear Dec. 1967.

    Google Scholar 

  24. Krein, M.G., & M.A. Rutman, Linear operators leaving invariant a cone in a Banach space, Translations of the A.M.S., Series 1, 10, 1962, pp. 199–325.

  25. Reid, W.H., & D.L. Harris, Some further results on the Bénard problem. Phys. Fluids 1, 102–110 (1958).

    Google Scholar 

  26. Dunford, N., & J.T. Schwartz, Linear Operators, Part I: General Theory. New York: Interscience 1958.

    Google Scholar 

  27. Iudovich, V.I., On the equations of steady state convection. P.M.M. 27, 295–300 (1963).

    Google Scholar 

  28. Rabinowitz, P.H., Periodic solutions of nonlinear hyperbolic partial differential equations. Comm. Pure and Appl. Math. 20, 145–205 (1967).

    Google Scholar 

  29. Nirenberg, L., On elliptic partial differential equations. Ann. Scuola Norm. Super. Pisa, Ser. 3, 13, 1–48 (1959).

    Google Scholar 

  30. Douglis, A., & L. Nirenberg, Interior estimates for elliptic systems of partial differential equations. Comm. Pure and Appl. Math. 8, 503–538 (1955).

    Google Scholar 

  31. Karlin, S., The existence of eigenvalues for integral operators. Trans. Amer. Math. Soc. 113, 1–17 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Finn

This work was supported in part by the Air Force under Contract No. AF 49 (638) 1345.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabinowitz, P.H. Existence and nonuniqueness of rectangular solutions of the Bénard problem. Arch. Rational Mech. Anal. 29, 32–57 (1968). https://doi.org/10.1007/BF00256457

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00256457

Keywords

Navigation