Skip to main content
Log in

On Existence and Uniqueness to Homogeneous Boltzmann Flows of Monatomic Gas Mixtures

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We solve the Cauchy problem for the full non-linear homogeneous Boltzmann system of equations describing multi-component monatomic gas mixtures for binary interactions in three dimensions. More precisely, we show the existence and uniqueness of the vector value solution by means of an existence theorem for ODE systems in Banach spaces under the transition probability rates assumption corresponding to hard potentials rates in the interval (0, 1], with an angular section modeled by an integrable function of the angular transition rates modeling binary scattering effects. The initial data for the vector valued solutions needs to be a vector of non-negative measures with finite total number density, momentum and strictly positive energy, as well as to have a finite \(L^1_{k_*}(\mathbb {R}^3)\)-integrability property corresponding to a sum across each species of \(k_*\)-polynomial weighted norms depending on the corresponding mass fraction parameter for each species as much as on the intermolecular potential rates, referred as to the scalar polynomial moment of order \(k_*\). The rigorous existence and uniqueness results rely on a new angular averaging lemma adjusted to vector values solution that yield a Povzner estimate with constants that decay with the order of the corresponding dimensionless scalar polynomial moment. In addition, such initial data yields global generation of such scalar polynomial moments at any order as well as their summability of moments to obtain estimates for corresponding scalar exponentially decaying high energy tails, referred as to scalar exponential moments associated to the system solution. Such scalar polynomial and exponential moments propagate as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alonso, R., Bagland, V., Cheng, Y., Lods, B.: One-dimensional dissipative Boltzmann equation: measure solutions, cooling rate, and self-similar profile. SIAM J. Math. Anal. 50(1), 1278–1321, 2018

    Article  MathSciNet  Google Scholar 

  2. Alonso, R., Cañizo, J.A., Gamba, I.M., Mouhot, C.: A new approach to the creation and propagation of exponential moments in the Boltzmann equation. Commun. Partial Differ. Equ. 38(1), 155–169, 2013

    Article  MathSciNet  Google Scholar 

  3. Alonso, R.J., Gamba, I.M.: Revisiting the Cauchy problem for the Boltzmann equation for hard potentials with integrable cross section: from generation of moments to propagation of \(L^{\infty }\) bounds. Preprint (2018)

  4. Alonso, R.J., Gamba, I.M., Tasković, M.: Exponentially-tailed regularity and time asymptotic for the homogeneous Boltzmann equation. Preprint. arXiv:1711.06596

  5. Alonso, R.J., Gamba, I.M., Tran, M.B.: The Cauchy problem for the quantum Boltzmann equation for bosons at very low temperature. Preprint. arXiv:1609.07467.v2

  6. Bobylev, A.V.: Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems. J. Stat. Phys. 88, 1183–1214, 1997

    Article  ADS  MathSciNet  Google Scholar 

  7. Bobylev, A.V., Gamba, I.M.: Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules. Kinet. Relat. Models10, 573–585, 2017

    Article  MathSciNet  Google Scholar 

  8. Bobylev, A.V., Gamba, I.M., Panferov, V.A.: Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. J. Stat. Phys. 116, 1651–1682, 2004

    Article  ADS  MathSciNet  Google Scholar 

  9. Boudin, L., Grec, B., Pavić, M., Salvarani, F.: Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinet. Relat. Models6(1), 137–157, 2013

    Article  MathSciNet  Google Scholar 

  10. Bressan, A.: Notes on the Boltzmann equation. In: Lecture Notes for a Summer Course, S.I.S.S.A., 2005, http://www.math.psu.edu/bressan/

  11. Briant, M., Daus, E.: The Boltzmann equation for a multi-species mixture close to global equilibrium. Arch. Ration. Mech. Anal. 222(3), 1367–1443, 2016

    Article  MathSciNet  Google Scholar 

  12. Desvillettes, L.: Some applications of the method of moments for the homogeneous Boltzmann and Kac equations. Arch. Ration. Mech. Anal. 123, 387–404, 1993

    Article  MathSciNet  Google Scholar 

  13. Desvillettes, L., Monaco, R., Salvarani, F.: A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B Fluids24, 219–236, 2005

    Article  ADS  MathSciNet  Google Scholar 

  14. Gamba, I.M., Panferov, V., Villani, C.: Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation. Arch. Ration. Mech. Anal. 194, 253–282, 2009

    Article  MathSciNet  Google Scholar 

  15. Gamba, I.M., Smith, L., Tran, M.B.: On the wave turbulence theory for stratified flows in the ocean. Submitted for Publication, 2018, arXiv:1709.08266v2

  16. Lu, X., Mouhot, C.: On measure solutions of the Boltzmann equation, part I: moment production and stability estimates. J. Differ. Equ. 252, 3305–3363, 2012

    Article  ADS  MathSciNet  Google Scholar 

  17. Martin, R.H.: Nonlinear Operators and Differential Equations in Banach Spaces. Pure and Applied Mathematics. Wiley, Hoboken 1976

    Google Scholar 

  18. Mouhot, C.: Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Commun. Math. Phys. 261, 629–672, 2006

    Article  ADS  MathSciNet  Google Scholar 

  19. Pavić-Čolić, M., Tasković, M.: Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules. Kinet. Relat. Models11(3), 597–613, 2018

    Article  MathSciNet  Google Scholar 

  20. Povzner, A.J.: The Boltzmann equation in the kinetic theory of gases. Am. Math. Soc. Transl. 47(2), 193–214, 1965

    MATH  Google Scholar 

  21. Sirovich, L.: Kinetic modeling of gas mixtures. Phys. Fluids5, 908–918, 1962

    Article  ADS  MathSciNet  Google Scholar 

  22. Tasković, M., Alonso, R.J., Gamba, I.M., Pavlović, N.: On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff. SIAM J. Math. Anal. 50(1), 834–869, 2018

    Article  MathSciNet  Google Scholar 

  23. Wennberg, B.: Entropy dissipation and moment production for the Boltzmann equation. J. Stat. Phys. 86(5–6), 1053–1066, 1997

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Ricardo J. Alonso for fruitful discussions on the topic. This work has been partially supported by NSF Grants DMS 1715515 and RNMS (Ki-Net) DMS-1107444. Milana Pavić-Čolić acknowledges the support of the Ministry of Education, Science and Technological Development, Republic of Serbia within the Project No. ON174016. This work was completed while Milana Pavić-Čolić was a Fulbright Scholar from the University of Novi Sad, Serbia, visiting the Institute of Computational Engineering and Sciences (ICES) at the University of Texas Austin, co-funded by a JTO Fellowship. ICES support is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene M. Gamba.

Additional information

Communicated by P.-L. Lions.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Existence and Uniqueness Theory for ODE in Banach Spaces

Theorem A.1

Let \(E:=(E,\left\| \cdot \right\| )\) be a Banach space, \(\mathcal {S}\) be a bounded, convex and closed subset of E, and \(\mathcal {Q}:\mathcal {S}\rightarrow E\) be an operator satisfying the following properties:

  1. (a)

    The Hölder continuity condition

    $$\begin{aligned} \left\| \mathcal {Q}[u] - \mathcal {Q}[v] \right\| \leqq C \left\| u-v \right\| ^{\beta }, \ \beta \in (0,1), \ \forall u, v \in \mathcal {S}; \end{aligned}$$
  2. (b)

    The Sub-tangent condition

    $$\begin{aligned} \lim \limits _{h\rightarrow 0+} \frac{\text {dist}\left( u + h \mathcal {Q}[u], \mathcal {S} \right) }{h} =0, \ \forall u \in \mathcal {S}; \end{aligned}$$
  3. (c)

    The One-sided Lipschitz condition

    $$\begin{aligned} \left[ \mathcal {Q}[u] - \mathcal {Q}[v], u - v \right] \leqq C \left\| u-v \right\| , \ \forall u, v \in \mathcal {S}, \end{aligned}$$

    where \(\left[ \varphi ,\phi \right] =\lim _{h\rightarrow 0^-} h^{-1}\left( \left\| \phi + h \varphi \right\| - \left\| \phi \right\| \right) \).

Then the equation

$$\begin{aligned} \begin{aligned} \partial _t u = \mathcal {Q}[u], \ \text {for} \ t\in (0,\infty ), \ \text {with initial data} \ u(0)= u_0 \ \text {in} \ \mathcal {S}, \end{aligned} \end{aligned}$$

has a unique solution in \(C([0,\infty ),\mathcal {S})\cap C^1((0,\infty ),E)\).

The proof of this Theorem on ODE flows on Banach spaces can be found in the unpublished notes [10] or in [3].

Remark 9

In Sect. 5, we will concentrate on \(E:=L_2^1\). Therefore, for the one-sided Lipschitz condition, we will use the following inequality:

$$\begin{aligned} \left[ \varphi ,\phi \right] \leqq \sum _{i=1}^I \int _{ \mathbb {R}^3} \varphi _i(v) \, \text {sign}(\phi _i (v))\left\langle v \right\rangle _i^2 \mathrm {d}v, \end{aligned}$$

for \(\varphi =\left[ \varphi _i\right] _{1\leqq i\leqq I}\) and \(\phi =\left[ \phi _i\right] _{1\leqq i\leqq I}\), as pointed out in [3].

Appendix B. Upper and Lower Bound of the Cross Section

In this section, we derive an upper and lower estimate for the non-angular part of the cross section, \(\left| v-v_*\right| ^{\gamma _{ij}}\), \(\gamma _{ij} \in (0,1]\), with \(1\leqq i, j, \leqq I\). First, for the upper estimate, by triangle inequality, we have

$$\begin{aligned} \sqrt{\frac{m_i}{\sum _{i=1}^I m_i}} \sqrt{\frac{m_j}{\sum _{i=1}^I m_i}} \left| v-v_*\right|&\leqq \min \left\{ \sqrt{\frac{m_i}{\sum _{i=1}^I m_i}}, \sqrt{\frac{m_j}{\sum _{i=1}^I m_i}} \right\} \left| v-v_*\right| \nonumber \\&\leqq \min \left\{ \sqrt{\frac{m_i}{\sum _{i=1}^I m_i}}, \sqrt{\frac{m_j}{\sum _{i=1}^I m_i}} \right\} \left( \left| v\right| + \left| v_*\right| \right) \nonumber \\&\leqq \sqrt{\frac{m_i}{\sum _{i=1}^I m_i}} \left| v\right| + \sqrt{\frac{m_j}{\sum _{i=1}^I m_i}} \left| v_*\right| \nonumber \\&\leqq \sqrt{1 + \frac{m_i}{\sum _{i=1}^I m_i} \left| v\right| ^2} + \sqrt{1 + \frac{m_j}{\sum _{i=1}^I m_i} \left| v_*\right| ^2}. \end{aligned}$$
(B.1)

Therefore,

$$\begin{aligned} \left| v-v_*\right| ^{\gamma _{ij}} \leqq \left( \frac{\sum _{i=1}^I m_i}{\sqrt{m_i m_j}} \right) ^{\gamma _{ij}} \left( \left\langle v \right\rangle _i^{\gamma _{ij}} + \left\langle v_* \right\rangle _j^{\gamma _{ij}}\right) \end{aligned}$$
(B.2)

for \(\gamma _{ij}\in (0,1]\), and any \(i, j \in \left\{ 1,\dots ,I \right\} \).

From (B.1) it also follows that

$$\begin{aligned}&\sqrt{\frac{m_i}{\sum _{i=1}^I m_i}} \sqrt{\frac{m_j}{\sum _{i=1}^I m_i}} \left| v-v_*\right| \\&\quad \leqq \sqrt{\frac{m_i}{\sum _{i=1}^I m_i}} \left| v\right| + \sqrt{\frac{m_j}{\sum _{i=1}^I m_i}} \left| v_*\right| \\&\quad = \left( \frac{m_i}{\sum _{i=1}^I m_i} \left| v\right| ^2 + \frac{m_j}{\sum _{i=1}^I m_i} \left| v_*\right| ^2 + 2 \frac{\sqrt{m_i m_j}}{\sum _{i=1}^I m_i} \left| v\right| \left| v_*\right| \right) ^{1/2}\\&\quad \leqq \left\langle v \right\rangle _i \left\langle v_* \right\rangle _j. \end{aligned}$$

Therefore,

$$\begin{aligned} \left| v-v_*\right| ^{\gamma _{ij}} \leqq \left( \frac{\sum _{i=1}^I m_i}{\sqrt{m_i m_j}} \right) ^{\gamma _{ij}} \left\langle v \right\rangle _i^{\gamma _{ij}} \left\langle v_* \right\rangle _j^{\gamma _{ij}} \end{aligned}$$
(B.3)

for \(\gamma _{ij} \in (0,1]\) and \(1\leqq i, j \leqq I\).

Then, for the lower estimate, we use the ideas of Lemma 2.1 in [4] to prove the next Lemma. Note that here functions F do not need to be solutions of the Boltzmann problem. Moreover, this lower bound may not hold for F being a singular measure, since the estimate degenerates as c goes to zero.

Lemma B.1

Let \(\gamma _{ij} \in [0,2]\), for any \(i, j \in \left\{ 1,\dots , I \right\} \), and assume that \(0\leqq \left\{ F(t) = \left[ f_1(t) \dots f_I(t) \right] ^T \right\} _{t\geqq 0} \subset L_2^1\) satisfies

$$\begin{aligned} c\leqq & {} \sum _{i=1}^I \int _{\mathbb {R}^3} m_i \, f_i (t, v) \,\mathrm {d}v \leqq C, \quad c \leqq \sum _{i=1}^I \int _{\mathbb {R}^3} f_i (t, v) m_i \left| v\right| ^2 \,\mathrm {d}v \leqq C,\\&\sum _{i=1}^I \int _{\mathbb {R}^3} f_i (t, v) m_i v \,\mathrm {d}v=0 \end{aligned}$$

for some positive constants c and C. Assume also the boundedness of the moment

$$\begin{aligned} \sum _{i=1}^I \int _{\mathbb {R}^3} f_i (t, v) m_i \left| v\right| ^{2+\varepsilon } \,\mathrm {d}v \leqq B, \quad \varepsilon >0. \end{aligned}$$

Then, there exists a constant \(c_{lb}\) characterized in (B.11) such that

$$\begin{aligned} \sum _{i=1}^I \int _{\mathbb {R}^3} m_i f_i (t, w) \left| v-w\right| ^{\gamma _{ij}} \,\mathrm {d}w \geqq c_{lb} \left\langle v \right\rangle _j^{\overline{\gamma }} \end{aligned}$$
(B.4)

for any \(j \in \{1,\dots ,I\}\), with \(\overline{\gamma }=\max _{1\leqq i, j \leqq I}\gamma _{ij}\).

Proof

Case \(\gamma _{ij}=0\) is trivial, so take \(\gamma _{ij} \in (0,2]\) for any \(i,j,=1,\dots ,I\). Let us denote the open ball centered at the origin and of radius \(r>0\) with \(B(0,r) \subset \mathbb {R}^3\). We consider separately cases when \(v \in B(0,r)\) and \(v \in B(0,r)^c\), with r to be chosen later on depending on constants c, C, and \(\gamma _{ij}\).

For \(v \in B(0,r)^c\) we first consider the whole domain \(\mathbb {R}^3\), and write, by the Young inequality, for any \(v \in \mathbb {R}^3\) and \(\gamma _{ij} \in (0,2]\),

$$\begin{aligned} \sum _{i=1}^I m_i \int _{\mathbb {R}^3} f_i(t,w) \left| v-w\right| ^{\gamma _{ij}} \,\mathrm {d} w \geqq \sum _{i=1}^I m_i \int _{\mathbb {R}^3} f_i(t,w) \left( \tilde{c} \left| v\right| ^{\gamma _{ij}} - \left| w\right| ^{\gamma _{ij}} \right) \,\mathrm {d} w, \end{aligned}$$

where \(\tilde{c} =\min _{1\leqq i, j \leqq I} \left( \min \{1, 2^{1-\gamma _{ij}}\} \right) \). Since

$$\begin{aligned}&\sum _{i=1}^I m_i \int _{\mathbb {R}^3} f_i(t,w) \left| w\right| ^{\gamma _{ij}} \,\mathrm {d} w \\&\quad \leqq \sum _{i=1}^I m_i \int _{B(0,1)} f_i(t,w) \,\mathrm {d} w + \sum _{i=1}^I m_i \int _{B(0,1)^c} f_i(t,w) \left| w\right| ^2 \,\mathrm {d} w \leqq 2 C, \end{aligned}$$

we obtain that, for any \(v\in \mathbb {R}^3\),

$$\begin{aligned}&\sum _{i=1}^I m_i \int _{\mathbb {R}^3} f_i(t,w) \left| v-w\right| ^{\gamma _{ij}} \,\mathrm {d} w \nonumber \\&\quad \geqq \tilde{c} \sum _{i=1}^I \left| v\right| ^{\gamma _{ij}} m_i \int _{\mathbb {R}^3} f_i(t,w) \,\mathrm {d} w - 2C. \end{aligned}$$
(B.5)

Since, for any \(i,j=1,\dots ,I\) and \(v\in \mathbb {R}^3\), we have the following lower bound:

$$\begin{aligned} \left| v \right| ^{\gamma _{ij}} = \left| v \right| ^{\gamma _{ij}} \left( \mathbb {1}_{\left| v\right| <1}(v) + \mathbb {1}_{\left| v\right| \geqq 1}(v) \right) \geqq \left| v \right| ^{\overline{\gamma }} +1, \end{aligned}$$

where

$$\begin{aligned} \overline{\gamma }=\max _{1\leqq i, j \leqq I}\gamma _{ij}. \end{aligned}$$

Therefore, (B.5) becomes

$$\begin{aligned} \sum _{i=1}^I m_i \int _{\mathbb {R}^3} f_i(t,w) \left| v-w\right| ^{\gamma _{ij}} \,\mathrm {d} w\geqq & {} \tilde{c} \, c \, \left| v\right| ^{\overline{\gamma }} + \tilde{c} \, c - 2C \\\geqq & {} \tilde{c} \, c \left( \sqrt{\frac{m_j}{\sum _{i=1}^I m_i}} \left| v\right| \right) ^{\overline{\gamma }} + \tilde{c} \, c - 2C \end{aligned}$$

for every \(j\in \{1,\dots ,I\}\). Since here \(v \in B(0,r)^c\), we choose r in a such a way as to ensure that

$$\begin{aligned} \tilde{c} \, c \left( \sqrt{\frac{m_j}{\sum _{i=1}^I m_i}} \left| v\right| \right) ^{\overline{\gamma }} + \tilde{c} \, c - 2C \geqq \frac{\tilde{c} \, c}{2} \left( \sqrt{\frac{m_j}{\sum _{i=1}^I m_i}} \left| v\right| \right) ^{\overline{\gamma }}, \end{aligned}$$

which amounts to choosing

$$\begin{aligned} r:=r_* =\left( \frac{2 \, C}{\tilde{c} \, c} \right) ^\frac{1}{\overline{\gamma }}, \end{aligned}$$
(B.6)

since \(C\geqq c\) by assumption, and \(\tilde{c} \leqq 1\). Therefore, for \(v \in B(0,r^*)^c\), we have

$$\begin{aligned} \sum _{i=1}^I m_i \int _{\mathbb {R}^3} f_i(t,w) \left| v-w\right| ^{\gamma _{ij}} \,\mathrm {d} w \geqq \frac{\tilde{c} \, c}{2} \left( \sqrt{\frac{m_j}{\sum _{i=1}^I m_i}} \left| v\right| \right) ^{\overline{\gamma }} \end{aligned}$$
(B.7)

for any \(j\in \{1,\dots ,I\}\).

On the other hand, let us study the case \(v \in B(0,r^*)\). First note that for any \(R>0\),

$$\begin{aligned}&\sum _{i=1}^I m_i \int _{\left| v-w\right| \leqq R} f_i(t,w) \left| v-w\right| ^2 \,\mathrm {d} w \nonumber \\&\quad =\sum _{i=1}^I m_i \int _{\mathbb {R}^3} f_i(t,w) \left| v-w\right| ^2 \,\mathrm {d} w - \sum _{i=1}^I m_i \int _{\left| v-w\right| \geqq R} f_i(t,w) \left| v-w\right| ^2 \,\mathrm {d} w \nonumber \\&\quad \geqq c \left| v\right| ^2+ c - \sum _{i=1}^I m_i \int _{\left| v-w\right| \geqq R} f_i(t,w) \left| v-w\right| ^2 \,\mathrm {d} w \nonumber \\&\quad \geqq c (1+ \left| v\right| ^2) - \frac{1}{R^{\varepsilon }} \sum _{i=1}^I m_i \int _{\left| v-w\right| \geqq R} f_i(t,w) \left| v-w\right| ^{2+\varepsilon } \,\mathrm {d} w. \end{aligned}$$
(B.8)

Next, we have

$$\begin{aligned}&\sum _{i=1}^I m_i \int _{\left| v-w\right| \geqq R} f_i(t,w) \left| v-w\right| ^{2+\varepsilon } \,\mathrm {d} w \leqq 2^{1+\varepsilon } \max \{C, B\} \left( 1+ \left| v\right| ^{2+\varepsilon }\right) \\&\quad \leqq 2^{1+\varepsilon } \max \{C,B\} \left( 1+ \left| v\right| ^{2}\right) ^{\frac{2+\varepsilon }{2}} \leqq 2^{1+\varepsilon } \max \{C, B\} \left( 1+ r_*^{2}\right) ^{\frac{2+\varepsilon }{2}}. \end{aligned}$$

Choosing \(R:=R(r_*, c, C, B)>0\) sufficiently large such that

$$\begin{aligned}&\frac{1}{R^\varepsilon }2^{1+\varepsilon } \max \{C, B\} \left( 1+ r_*^{2}\right) ^{\frac{2+\varepsilon }{2}} \leqq \frac{c}{2}, \quad \text {or} \ R \nonumber \\&\quad \geqq \left( 2^{2+\varepsilon } \left( \frac{\max \{C,B\}}{c} \right) \left( 1+ r_*^{2}\right) ^{\frac{2+\varepsilon }{2}}\right) ^{\frac{1}{\varepsilon }}, \end{aligned}$$
(B.9)

from (B.8) we have

$$\begin{aligned} \sum _{i=1}^I m_i \int _{\left| v-w\right| \leqq R} f_i(t,w) \left| v-w\right| ^2 \,\mathrm {d} w \geqq \frac{c}{2} \quad \forall v \in B(0,r_*). \end{aligned}$$

Moreover, for this choice of R, for any \(\gamma _{ij}\in (0,2]\) we have

$$\begin{aligned}&\sum _{i=1}^I m_i \int _{\mathbb {R}^3} f_i(t,w) \left| v-w\right| ^{\gamma _{ij}} \,\mathrm {d} w \geqq \sum _{i=1}^I m_i \int _{\left| v-w\right| \leqq R} f_i(t,w) \left| v-w\right| ^{\gamma _{ij}} \,\mathrm {d} w \nonumber \\&\quad \geqq \sum _{i=1}^I R^{\gamma _{ij} -2 } \, m_i \int _{\left| v-w\right| \leqq R} f_i(t,w) \left| v-w\right| ^2 \,\mathrm {d} w. \end{aligned}$$

Since \(R\geqq 1\), we can bound \(R^{\gamma _{ij} -2 } \geqq R^{(\min _{1\leqq i, j \leqq I}\gamma _{ij}) -2}\), which yields the estimate

$$\begin{aligned} \sum _{i=1}^I m_i \int _{\mathbb {R}^3} f_i(t,w) \left| v-w\right| ^{\gamma _{ij}} \,\mathrm {d} w \geqq \frac{c}{2 R^{2-\min _{1\leqq i, j \leqq I}\gamma _{ij}}}, \quad \forall v \in B(0,r_*).\nonumber \\ \end{aligned}$$
(B.10)

Finally, summarizing (B.7) and (B.10),

$$\begin{aligned}&\sum _{i=1}^I m_i \int _{\mathbb {R}^3} f_i(t,w) \left| v-w\right| ^{\gamma _{ij}} \,\mathrm {d} w \\&\quad \geqq \frac{c}{2 R^{2-\min _{1\leqq i, j \leqq I}\gamma _{ij}}} \mathbb {1}_{B(0,r_*)}(v) \\&\qquad +\, \frac{\tilde{c} \, c}{2} \left( \sqrt{\frac{m_j}{\sum _{i=1}^I m_i}} \left| v\right| \right) ^{\overline{\gamma }}\mathbb {1}_{B(0,r_*)^c}(v)\\&\quad \geqq \frac{\tilde{c} \, c}{2 R^{2-\min _{1\leqq i, j \leqq I}\gamma _{ij}}} \left( \mathbb {1}_{B(0,r_*)}(v)+ \left( \sqrt{\frac{m_j}{\sum _{i=1}^I m_i}} \left| v\right| \right) ^{\overline{\gamma }}\mathbb {1}_{B(0,r_*)^c}(v) \right) . \end{aligned}$$

Then there exists a constant \(c_{lb}\) such that

$$\begin{aligned} \frac{\tilde{c} \, c}{2 R^{2-\min _{1\leqq i, j \leqq I}\gamma _{ij}}} \left( \mathbb {1}_{B(0,r_*)}(v)+ \left( \sqrt{\frac{m_j}{\sum _{i=1}^I m_i}} \left| v\right| \right) ^{\overline{\gamma }}\mathbb {1}_{B(0,r_*)^c}(v) \right) \geqq c_{lb} \left\langle v \right\rangle _j^{\overline{\gamma }} \end{aligned}$$

for any \(j\in \left\{ 1,\dots ,I\right\} \). In fact, one may even construct \(c_{lb}\) in order to ensure the last inequality. For example, \(c_{lb}\) can take the value

$$\begin{aligned} c_{lb}= & {} \frac{c}{2} \tilde{c} \left( 2^{2+\varepsilon } \left( \frac{\max \{C,B\}}{c} \right) \left( 1+ \left( \frac{ 2 \, C}{\tilde{c} \, c} \right) ^\frac{2}{\overline{\gamma }}\right) ^{\frac{2+\varepsilon }{2}}\right) ^{\frac{-2+\min _{1\leqq i, j \leqq I}\gamma _{ij}}{\varepsilon }} \nonumber \\&\times \left( 1 + \frac{\max _{1\leqq j \leqq I} m_j}{\sum _{i=1}^I m_i} \left( \frac{ 2 \, C}{\tilde{c} \, c} \right) ^2 \right) ^{-\overline{\gamma }/2}, \end{aligned}$$
(B.11)

by taking into account (B.6) and (B.9). \(\quad \square \)

Appendix C. Some Technical Results

Lemma C.1

(Polynomial inequality I, Lemma 2 from [8].) Assume \(p>1\), and let \(n_p=\lfloor \frac{p+1}{2}\rfloor \). Then, for all \(x, y>0\), the following inequality holds:

$$\begin{aligned} \left( x+y\right) ^p - x^p - y^p \leqq \sum _{n=1}^{n_p} \left( \begin{matrix} p \\ n \end{matrix} \right) \left( x^n y^{p-n} + x^{p-n} y^n \right) . \end{aligned}$$

Lemma C.2

(Polynomial inequality II.) Let \(b+1\leqq a\leqq \frac{p+1}{2}\). Then, for any \(x, y\geqq 0\),

$$\begin{aligned} x^a y^{p-a} + x^{p-a} y^a \leqq x^b y^{p-b} + x^{p-b} y^b. \end{aligned}$$

Proof

This Lemma is a modified version of Lemma A.1 from [22]. Indeed, the proof is the same; one just needs to observe that \(a-b\geqq 0\) and \(p-a-b\geqq 0\), and therefore that

$$\begin{aligned} \left( y^{a-b}-x^{a-b}\right) x^by^b\left( y^{p-a-b}-x^{p-a-b}\right) \geqq 0 \end{aligned}$$

for any \(x,y\geqq 0\). \(\quad \square \)

Lemma C.3

(Interpolation inequality.) Let \(k=\alpha k_1 + (1-\alpha ) k_2 \), \(\alpha \in (0,1)\), \(0<k_1\leqq k \leqq k_2\). Then, for any \(g \in L_{k,i}^1\)

$$\begin{aligned} \left\| g \right\| _{L_{k,i}^1} \leqq \left\| g \right\| _{L_{k_1,i}^1}^{\alpha } \left\| g \right\| _{L_{k_2,i}^1}^{1-\alpha }. \end{aligned}$$
(C.1)

We can extend this interpolation inequality for vector functions \(\mathbb {G}=\left[ g_i\right] _{1\leqq i \leqq I}\). Namely, under the same assumptions,

$$\begin{aligned} \left\| \mathbb {G} \right\| _{L_k^1} \leqq I \left\| \mathbb {G} \right\| _{L_{k_1}^1}^\alpha \left\| \mathbb {G} \right\| _{L_{k_2}^1}^{1-\alpha }. \end{aligned}$$
(C.2)

Lemma C.4

(Jensen’s inequality.) Let f(x) be positive and integrable in \(\mathbb {R}^d\) and G a convex function. Then

$$\begin{aligned} G\left( \frac{1}{\int f(x) \,\mathrm {d}x} \int f(x) g(x) \,\mathrm {d}x \right) \leqq \frac{1}{\int f(x) \,\mathrm {d}x} \int f(x) G(g(x)) \,\mathrm {d}x \end{aligned}$$

for any positive function g.

We apply this lemma specifying that \(g(x)=\left\langle x \right\rangle _i^k\) and \(G(x)=x^{1+\frac{\lambda }{k}}\), \(\lambda \in (0,1]\) and \(k\geqq 1\). This implies

$$\begin{aligned} \int _{ \mathbb {R}^3} f_i(v) \left\langle v \right\rangle _i^{k+\lambda } \,\mathrm {d}v \geqq \left( \int _{ \mathbb {R}^3} f_i(v) \,\mathrm {d}v \right) ^{-\frac{\lambda }{k}} \left( \int _{ \mathbb {R}^3} f_i(v) \left\langle v \right\rangle _i^k \,\mathrm {d}v \right) ^{1+\frac{\lambda }{k}} . \end{aligned}$$

If, additionally, we have an upper bound on the zero order scalar polynomial moment, that is, if it holds that

$$\begin{aligned} \int _{ \mathbb {R}^3} f_i(v) \,\mathrm {d}v = \mathfrak {m}_{0,i}[\mathbb {F}] \leqq \mathfrak {m}_0[\mathbb {F}] \leqq C_{\mathfrak {m}_{0}}, \end{aligned}$$

then

$$\begin{aligned} \int _{ \mathbb {R}^3} f_i(v) \left\langle v \right\rangle _i^{k+\lambda } \,\mathrm {d}v \geqq C_{\mathfrak {m}_{0}}^{-\frac{\lambda }{k}} \left( \int _{ \mathbb {R}^3} f_i(v) \left\langle v \right\rangle _i^k \,\mathrm {d}v \right) ^{1+\frac{\lambda }{k}} . \end{aligned}$$

Summing over \(i=1,\dots ,I\), after some manipulation we get a control from below for the moment \( \mathfrak {m}_{k+\lambda }[\mathbb {F}]\). Indeed, we get that

$$\begin{aligned} \mathfrak {m}_{k+\lambda }[\mathbb {F}] \geqq \left( I C_{\mathfrak {m}_{0}} \right) ^{-\frac{\lambda }{k}} \mathfrak {m}_k[\mathbb {F}]^{1+\frac{\lambda }{k}}. \end{aligned}$$
(C.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamba, I.M., Pavić-Čolić, M. On Existence and Uniqueness to Homogeneous Boltzmann Flows of Monatomic Gas Mixtures. Arch Rational Mech Anal 235, 723–781 (2020). https://doi.org/10.1007/s00205-019-01428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01428-y

Navigation