Skip to main content
Log in

On the Geometry of the Hamilton–Jacobi Equation and Generating Functions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we develop a geometric version of the Hamilton–Jacobi equation in the Poisson setting. Specifically, we “geometrize” what is usually called a complete solution of the Hamilton–Jacobi equation. We use some well-known results about symplectic groupoids, in particular cotangent groupoids, as a keystone for the construction of our framework. Our methodology follows the ambitious program proposed by Weinstein (In Mechanics day (Waterloo, ON, 1992), volume 7 of fields institute communications, American Mathematical Society, Providence, 1996) in order to develop geometric formulations of the dynamical behavior of Lagrangian and Hamiltonian systems on Lie algebroids and Lie groupoids. This procedure allows us to take symmetries into account, and, as a by-product, we recover results from Channell and Scovel (Phys D 50(1):80–88, 1991), Ge (Indiana Univ. Math. J. 39(3):859–876, 1990), Ge and Marsden (Phys Lett A 133(3):134–139, 1988), but even in these situations our approach is new. A theory of generating functions for the Poisson structures considered here is also developed following the same pattern, solving a longstanding problem of the area: how to obtain a generating function for the identity transformation and the nearby Poisson automorphisms of Poisson manifolds. A direct application of our results gives the construction of a family of Poisson integrators, that is, integrators that conserve the underlying Poisson geometry. These integrators are implemented in the paper in benchmark problems. Some conclusions, current and future directions of research are shown at the end of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics. Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass, 1978. Second edition, revised and enlarged, With the assistance of Tudor Raţiu and Richard Cushman

  2. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics, vol. 60 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1993. Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein, Corrected reprint of the second edition

  3. Balseiro P.: The Jacobiator of nonholonomic systems and the geometry of reduced nonholonomic brackets. Arch. Ration. Mech. Anal. 214(2), 453–501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balseiro P., García-Naranjo L.C.: Gauge transformations, twisted Poisson brackets and Hamiltonization of nonholonomic systems. Arch. Ration. Mech. Anal. 205(1), 267–310 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balseiro P., Sansonetto N.: A geometric characterization of certain first integrals for nonholonomic systems with symmetries. SIGMA Symmetry Integr. Geom. Methods Appl. 12, 018 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Benzel S., Ge Z., Scovel C.: Elementary construction of higher-order Lie–Poisson integrators. Phys. Lett. A 174(3), 229–232 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  7. Cannas da Silva, A.: Lectures on Symplectic Geometry, vol. 1764 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2001

  8. Cannas da Silva, A., Weinstein, A.: Geometric Models for Noncommutative Algebras, vol. 10 of Berkeley Mathematics Lecture Notes. American Mathematical Society, Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999

  9. Cariñena J.F., Gràcia X., Marmo G., Martínez E., Muñoz-Lecanda M.C., Román-Roy N.: Geometric Hamilton–Jacobi theory. Int. J. Geom. Methods Mod. Phys. 3(7), 1417–1458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cariñena J.F., Gràcia X., Marmo G., Martínez E., Muñoz-Lecanda M.G., Román-Roy N.: Geometric Hamilton–Jacobi theory for nonholonomic dynamical systems. Int. J. Geom. Methods Mod. Phys. 7(3), 431–454 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cendra, H., Marsden, J.E., Pekarsky, S., Ratiu, T.S.: Variational principles for Lie–Poisson and Hamilton–Poincaré equations. Mosc. Math. J. 3(3), 833–867, 1197–1198, 2003. {Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday}

  12. Cendra H., Marsden J.E., Ratiu T.S.: Lagrangian reduction by stages. Mem. Am. Math. Soc. 152, 722 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Channell P.J., Scovel C.: Symplectic integration of Hamiltonian systems. Nonlinearity 3(2), 231–259 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Channell P.J., Scovel J.C.: Integrators for Lie–Poisson dynamical systems. Phys. D 50(1), 80–88 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cortés, J., de León, M., Marrero, J.C., Martín de Diego, D., Martínez, E.: A survey of Lagrangian mechanics and control on Lie algebroids and groupoids. Int. J. Geom. Methods Mod. Phys. 3(3), 509–558, 2006

  16. Coste, A., Dazord, P., Weinstein, A.: Groupoï des symplectiques. In Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, vol. 87 of Publ. Dép. Math. Nouvelle Sér. A. Université Claude-Bernard, Lyon, i–ii, 1–62, 1987

  17. Crainic, M., Fernandes, R.L.: Lectures on integrability of Lie brackets. In Lectures on Poisson Geometry, vol. 17 of Geometry & Topology Monographs. Geometry & Topology Publication, Coventry, 1–107, 2011

  18. de León, M., Marrero, J.C., Martín de Diego, D.: Linear almost Poisson structures and Hamilton–Jacobi equation. Applications to nonholonomic mechanics. J. Geom. Mech. 2(2), 159–198, 2010

  19. de León, M., Marrero, J.C., Martínez, E.: Lagrangian submanifolds and dynamics on Lie algebroids. J. Phys. A 38(24), R241–R308, 2005

  20. de León, M., Martín de Diego, D., Vaquero, M.: Hamiton–Jacobi theory, symmetries and coisotropic reduction. J. Math. Pures Appl. 107(5), 591–614, 2017

  21. Ellis D.C.P., Gay-Balmaz F., Holm D.D., Ratiu T.S.: Lagrange–Poincaré field equations. J. Geom. Phys. 61(11), 2120–2146 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Feng, K., Qin, M.: Symplectic Geometric Algorithms for Hamiltonian Systems. Zhejiang Science and Technology Publishing House, Hangzhou; Springer, Heidelberg, 2010. Translated and revised from the Chinese original, With a foreword by Feng Duan

  23. Fernandes R.L., Ortega J.-P., Ratiu T.S.: The momentum map in Poisson geometry. Am. J. Math. 131(5), 1261–1310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fernández J., Tori C., Zuccalli M.: Lagrangian reduction of nonholonomic discrete mechanical systems. J. Geom. Mech. 2(1), 69–111 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ferraro, S., Jiménez, F., Martín, de Diego D.: New developments on the geometric nonholonomic integrator. Nonlinearity 28(4): 871–900 (2015)

  26. Forest E., Ruth R.D.: Fourth-order symplectic integration. Phys. D 43(1), 105–117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. García-Toraño Andrés E., Guzmán E., Marrero J.C., Mestdag T.: Reduced dynamics and Lagrangian submanifolds of symplectic manifolds. J. Phys. A 47(22), 225203 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Gay-Balmaz F., Holm D.D., Ratiu T.S.: Higher order Lagrange–Poincaré and Hamilton–Poincaré reductions. Bull. Braz. Math. Soc. (N.S.) 42(4), 579–606 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ge Z.: Generating functions, Hamilton–Jacobi equations and symplectic groupoids on Poisson manifolds. Indiana Univ. Math. J. 39(3), 859–876 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ge Z.: Equivariant symplectic difference schemes and generating functions. Phys. D 49(3), 376–386 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ge Z., Marsden J.E.: Lie–Poisson Hamilton–Jacobi theory and Lie–Poisson integrators. Phys. Lett. A 133(3), 134–139 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  32. Goldstein, H.: Classical Mechanics, 2nd ed. Addison-Wesley Publishing Co., Reading, Mass, 1980. Addison-Wesley Series in Physics.

  33. Grillo S., Padrón E.: A Hamiton–Jacobi theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds. J. Geom. Phys. 110, 101–129 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, vol. 31 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2010. Structure-preserving algorithms for ordinary differential equations, Reprint of the second (2006) edition

  35. Karasözen, B.: Poisson integrators. Math. Comput. Model 40(11–12), 1225–1244, 2004

  36. Leok, M., Marden, J.E., Weinstein, A.D.: A Discrete Theory of Connections on Principal Bundles. Preprint arXiv:math/0508338, 2005

  37. Mackenzie, K.C.H.: General Theory of Lie Groupoids and Lie Algebroids, vol. 213 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2005

  38. Makazaga J., Murua A.: A new class of symplectic integration schemes based on generating functions. Numer. Math. 113(4), 631–642 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Marrero, J.C., Martín de Diego, D., Martínez, E.: Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids. Nonlinearity 19(6), 1313–1348, 2006 Corrigendum: Nonlinearity 19, 3003–3004

  40. Marrero, J.C., Martín de Diego, D., Martínez, E.: On the exact discrete lagrangian function for variational integrators: theory and applications. Preprint arXiv:1608.01586, 2016

  41. Marrero J.C., Martínde Diego D., Stern A.: Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete Contin. Dyn. Syst. 35(1), 367–397 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Marsden, J.E.: Lectures on Mechanics, vol. 174 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1992

  43. Marsden, J.E., Misiołek, G., Ortega, J.-P., Perlmutter, M., Ratiu, T.S.: Hamiltonian Reduction by Stages, vol. 1913 of Lecture Notes in Mathematics. Springer, Berlin, 2007

  44. Marsden J.E., Raţiu T., Weinstein A.: Semidirect products and reduction in mechanics. Trans. Amer. Math. Soc. 281(1), 147–177 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  45. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn, vol. 17 of Texts in Applied Mathematics. Springer-Verlag, New York, 1999. A basic exposition of classical mechanical systems

  46. Martínez E.: Lagrangian mechanics on Lie algebroids. Acta Appl. Math. 67(3), 295–320 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. Martínez E.: Variational calculus on Lie algebroids. ESAIM Control Optim. Calc. Var. 14(2), 356–380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Martínez E., Mestdag T., Sarlet W.: Lie algebroid structures and Lagrangian systems on affine bundles. J. Geom. Phys. 44(1), 70–95 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. McLachlan R.I.: Explicit Lie–Poisson integration and the Euler equations. Phys. Rev. Lett. 71(19), 3043–3046 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. McLachlan R.I., Scovel C.: Equivariant constrained symplectic integration. J. Nonlinear Sci. 5(3), 233–256 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. McLachlan, R.I., Scovel, C.: A survey of open problems in symplectic integration. In Integration Algorithms and Classical Mechanics (Toronto, ON, 1993), vol. 10 of Fields Institute Communications. American Mathematical Society, Providence, 151–180, 1996

  52. Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics, Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, Annals of Mathematics Studies, No. 77

  53. Moser J., Veselov A.P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys. 139(2), 217–243 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Ohsawa T., Bloch A.M.: Nonholonomic Hamilton–Jacobi equation and integrability. J. Geom. Mech. 1(4), 461–481 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ohsawa T., Bloch A.M., Leok M.: Discrete Hamilton–Jacobi theory. SIAM J. Control Optim. 49(4), 1829–1856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ohsawa T., Fernandez O.E., Bloch A.M., Zenkov D.V.: Nonholonomic Hamilton–Jacobi theory via Chaplygin Hamiltonization. J. Geom. Phys. 61(8), 1263–1291 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Ruth R.D.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 2669–2671 (1983)

    Article  ADS  Google Scholar 

  58. Sarlet W., Mestdag T., Martínez E.: Lie algebroid structures on a class of affine bundles. J. Math. Phys. 43(11), 5654–5674 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Scovel C., Weinstein A.: Finite-dimensional Lie–Poisson approximations to Vlasov–Poisson equations. Commun. Pure Appl. Math. 47(5), 683–709 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  60. Vaisman, I. Lectures on the Geometry of Poisson Manifolds, vol. 118 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1994

  61. Viterbo, C.: Solutions of Hamilton–Jacobi equations and symplectic geometry. Addendum to: Séminaire sur les Équations aux Dérivées Partielles. 1994–1995 [École Polytech., Palaiseau, 1995; MR1362548 (96g:35001)]. In Séminaire sur les Équations aux Dérivées Partielles, 1995–1996, Sémin. Équ. Dériv. Partielles. École Polytech., Palaiseau, p. 8, 1996

  62. Weinstein, A.: Lagrangian mechanics and groupoids. In: Mechanics Day (Waterloo, ON, 1992), vol. 7 of Fields Institute Communications. American Mathematical Society, Providence, 207–231, 1996

  63. Zachos, C.K., Fairlie, D.B.: New infinite-dimensional algebras, sine brackets, and \({{\rm SU}(\infty)}\). In: Strings ’89 (College Station, TX, 1989). World Science Publisher, River Edge, 378–387, 1990

  64. Zeitlin V.: Finite-mode analogs of 2D ideal hydrodynamics: coadjoint orbits and local canonical structure. Phys. D 49(3), 353–362 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Marrero.

Additional information

Communicated by M. Ortiz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraro, S., de León, M., Marrero, J.C. et al. On the Geometry of the Hamilton–Jacobi Equation and Generating Functions. Arch Rational Mech Anal 226, 243–302 (2017). https://doi.org/10.1007/s00205-017-1133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1133-0

Navigation