Skip to main content
Log in

Analyticity and Decay Estimates of the Navier–Stokes Equations in Critical Besov Spaces

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we establish analyticity of the Navier–Stokes equations with small data in critical Besov spaces \({\dot{B}^{\frac{3}{p}-1}_{p,q}}\) . The main method is Gevrey estimates, the choice of which is motivated by the work of Foias and Temam (Contemp Math 208:151–180, 1997). We show that mild solutions are Gevrey regular, that is, the energy bound \({\|e^{\sqrt{t}\Lambda}v(t)\|_{E_p}>\infty}\) holds in \({E_p:=\tilde{L}^{\infty}(0,T;\dot{B}^{\frac{3}{p}-1}_{p,q})\cap \tilde{L}^{1}(0,T;\dot{B}^{\frac{3}{p}+1}_{p,q})}\) , globally in time for p < ∞. We extend these results for the intricate limiting case p = ∞ in a suitably designed E space. As a consequence of analyticity, we obtain decay estimates of weak solutions in Besov spaces. Finally, we provide a regularity criterion in Besov spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bae, H., Biswas, A.: Gevrey regularity for a class of dissipative equations with analytic nonlinearity (2011, submitted)

  2. Bae, H., Biswas, A., Tadmor, E.: Analyticity of the subcritical and critical quasi-geostrophic equations in Besov spaces (2011, preprint)

  3. Bertozzi A., Majda A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002) pp xii+545

    MATH  Google Scholar 

  4. Biswas A., Swanson D.: Gevrey regularity of solutions to the 3-D Navier–Stokes equations with weighted l p initial data. Indiana University of Mathematical Journal 56(3), 1157–1188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain J., Pavlovic N.: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 255(9), 2233–2247 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cannone M.: Ondeletts, Paraproduits et Navier–Stokes. Diderot Editeur, (1995)

    Google Scholar 

  7. Cannone M., Planchon F.: Self-similar solutions for Navier–Stokes equations in R 3. Comm. Partial Differ. Eq. 21, 179–193 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chemin J.: Perfect Incompressible Fluids. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  9. Chemin Y.: Thormes d’unicit pour le systme de Navier–Stokes tridimensionnel. J. Anal. Math. 77, 27–50 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheskidov A., Shvydkoy R.: The regularity of weak solutions of the 3D Navier–Stokes equations in B −1∞,∞ . Arch. Rational Mech. Anal. 195, 159–169 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  11. Constantin P., Fefferman C.: Direction of vorticity and the problem of global regularity for the Navier–Stokes equations. Indiana Univ. Math. J. 42(3), 775–789 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doelman A., Titi E.S.: Regularity of solutions and the convergence of the galerkin method in the complex ginzburg–landau equation. Numer. Func. Opt. Anal. 4, 299–321 (1993)

    Article  MathSciNet  Google Scholar 

  13. Doering C., Titi E.: Exponential decay rate of the power spectrum for solutions of the Navier–Stokes equations. Phys. Fluids 7, 1384–1390 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Dong H., Li D.: Spatial analyticity of the solutions to the subcritical dissipative quasi-geostrophic equations. Arch. Rational Mech. Anal. 189, 131–158 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Dong H., Li D.: Optimal local smoothing and analyticity rate estimates for the generalized Navier–Stokes equations. Commun. Math. Sci. 7(1), 67–80 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Escauriaza L., Serigin G., Sverak V.: L 3,∞ solutions of Navier–Stokes equations and backward uniquness. Uspekhi Mat. Nauk. 58, 3–44 (2003)

    Google Scholar 

  17. Foias C.: What do the Navier–Stokes equations tell us about turbulence? Harmonic Analysis and Nonlinear Differential Equations (Riverside, 1995). Contemp. Math. 208, 151–180 (1997)

    Article  MathSciNet  Google Scholar 

  18. Foias C., Temam R.: Some analytic and geometric properties of the solutions of the Navier–Stokes equations. J. Math. Pures Appl. 58, 339–368 (1979)

    MathSciNet  MATH  Google Scholar 

  19. Foias C., Temam R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley Theory and the Study of Function Spaces. CBMS regional conference series in mathematics, no. 79 (1991)

  21. Fujita H., Kato T.: On the Navier–Stokes initial value problem. I. Arch. Rational Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  22. Germain P.: The second iterate for the Navier–Stokes equation. J. Funct. Anal. 255(9), 2248–2264 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Germain, P., Pavlovic, N., Staffilani, G.: Regularity of solutions to the Navier–Stokes equations evolving from small data in BMO −1. Int. Math, Res. Not. 21, 35pages (2007)

  24. Grujic Z.: The geometric structure of the super-level sets and regularity for 3D Navier–Stokes equations. Indiana Univ. Math. J. 50(3), 1309–1317 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grujic Z., Kukavica I.: Space analyticity for the Navier–Stokes equations and related equations with initial data in L p. J. Funct. Anal. 152, 447–466 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guberovic R.: Smoothness of Koch-Tataru solutions to the Navier–Stokes equations revisited. Discret. Contin. Dyn. Syst. 27(1), 231–236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Henshaw W., Kreiss H., Reyna L .: Smallest scale estimates for the Navier–Stokes equations for incompressible fluids. Arch. Rational Mech. Anal. 112(1), 21–44 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Henshaw, W., Kreiss, H., Reyna, L.: On smallest scale estimates and a comparison of the vortex method to the pseudo-spectral method. Vortex Dynamics and Vortex Methods pp. 303–325 (1991)

  29. Kato T.: Strong L p solutions of the Navier–Stokes equations in R m with applications to weak solutions. Math. Zeit. 187, 471–480 (1984)

    Article  MATH  Google Scholar 

  30. Koch H., Tataru D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kukavica I.: Level sets of the vorticity and the stream function for the 2-D periodic Navier–Stokes equations with potential forces. J. Differ. Equ. 126, 374–388 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kukavica I.: On the dissipative scale for the Navier–Stokes equation. Indiana Univ. Math. J. 48(3), 1057–1082 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lemarié-Rieusset P.: Une remarque sur l’analyticite des solutions milds des equations de Navier–Stokes dans R 3. Comptes Rendus Acad. Sci. Paris, Serie I. 330, 183–186 (2000)

    ADS  MATH  Google Scholar 

  34. Lemarié-Rieusset, P.G.: Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, vol 431. Chapman & Hall/CRC, Boca Raton, 2002

  35. Leray J.: Essai sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  36. Masuda K.: On the analyticity and the unique continuation theorem for Navier–Stokes equations. Proc. Jpn. Acad. Ser. A Math. Sci. 43, 827–832 (1967)

    MathSciNet  MATH  Google Scholar 

  37. Miura H., Sawada O.: On the regularizing rate estimates of Koch-Tataru’s solution to the Navier–Stokes equations. Asymptot. Anal. 49, 1–15 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Miyakawa T., Schonbek M.: On optimal decay rates for weak solutions to the Navier–Stokes equations in r n. Mathematica Bohemica 126(2), 443–455 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Oliver M., Titi E.: Remark on the Rate of Decay of Higher Order Derivatives for Solutions to the Navier–Stokes Equations in \({{\mathbb R}^n}\) . J. Funct. Anal. 172(1), 1–18 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Planchon F.: Asymptotic behavior of global solutions to the Navier–Stokes equations in R 3. Rev. Mat. Iberoam. 129(10), 3025–3029 (2001)

    Google Scholar 

  41. Schonbek M.: L 2 decay for weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 88(3), 209–222 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schonbek M.: Lower bounds of rates of decay for solutions to the Navier–Stokes equations. J. Am. Math. Soc. 4(3), 423–449 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schonbek M.: Asymptotic behavior of solutions to the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 41, 809–823 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schonbek M., Wiegner M.: On the decay of higher-order norms of the solutions of Navier–Stokes equations. Proc. Roy Soc. Edinburgh Sect. A 126(3), 677–685 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. Schonbek M.E.: Large Time Behaviour of Solutions to the Navier–Stokes Equations in H m Spaces. Comm. Partial Differ. Equ. 11, 733–763 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  46. Serrin J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 9, 187–191 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Stein E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  48. Taylor, M.: Pseudodifferential Operators and Nonlinear PDE, Progress in Mathematics, vol 100. Birkauser, Boston, 1991

  49. Vukadinovic J., Constantin P., Titi E.: Dissipativity and gevrey regularity of a smoluchowski equation. Indiana Univ. Math. J. 54(4), 949–970 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wiegner M.: Decay results for weak solutions of the Navier Stokes equations on R n. J. London Math. Soc. 35, 303–313 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yoneda T.: Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near BMO −1. J. Funct. Anal. 258(10), 3376–3387 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eitan Tadmor.

Additional information

Communicated by C. Dafermos

Research was supported in part by NSF grants DMS10-08397 and FRG07-57227 (H. Bae and E. Tadmor) and DMS11-09532 (A. Biswas).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, H., Biswas, A. & Tadmor, E. Analyticity and Decay Estimates of the Navier–Stokes Equations in Critical Besov Spaces. Arch Rational Mech Anal 205, 963–991 (2012). https://doi.org/10.1007/s00205-012-0532-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0532-5

Keywords

Navigation