Skip to main content
Log in

Existence of Atoms and Molecules in the Mean-Field Approximation of No-Photon Quantum Electrodynamics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The Bogoliubov–Dirac–Fock (BDF) model is the mean-field approximation of no-photon quantum electrodynamics. The present paper is devoted to the study of the minimization of the BDF energy functional under a charge constraint. An associated minimizer, if it exists, will usually represent the ground state of a system of N electrons interacting with the Dirac sea, in an external electrostatic field generated by one or several fixed nuclei. We prove that such a minimizer exists when a binding (HVZ-type) condition holds. We also derive, study and interpret the equation satisfied by such a minimizer. Finally, we provide two regimes in which the binding condition is fulfilled, obtaining the existence of a minimizer in these cases. The first is the weak coupling regime for which the coupling constant α is small whereas αZ and the particle number N are fixed. The second is the non-relativistic regime in which the speed of light tends to infinity (or equivalently α tends to zero) and Z, N are fixed. We also prove that the electronic solution converges in the non-relativistic limit towards a Hartree–Fock ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson C.D.: The positive electron. Phys. Rev. 43, 491–494 (1933)

    Article  ADS  Google Scholar 

  2. Avron J., Seiler R., Simon B.: The index of a pair of projections. J. Funct. Anal. 120, 220–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bach V.: Error bound for the Hartree–Fock energy of atoms and molecules. Commun. Math. Phys. 147, 527–548 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bach V., Barbaroux J.-M., Helffer B., Siedentop H.: On the stability of the relativistic electron–positron field. Commun. Math. Phys. 201, 445–460 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bach V., Lieb E.H., Loss M., Solovej J.P.: There are no unfilled shells in unrestricted Hartree–Fock theory. Phys. Rev. Lett. 72, 2981–2983 (1994)

    Article  ADS  Google Scholar 

  6. Bach V., Lieb E.H., Solovej J.P.: Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76(1–2), 3–89 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bhatia R.: Matrix analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)

    Google Scholar 

  8. Borwein J., Preiss D.: A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Am. Math. Soc. 303(2), 517–527 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chaix, P.: Une Méthode de Champ Moyen Relativiste et Application à l’Etude du Vide de l’Electrodynamique Quantique. PhD Thesis, University Paris VI (1990)

  10. Chaix P., Iracane D.: From quantum electrodynamics to mean field theory: I. The Bogoliubov–Dirac–Fock formalism. J. Phys. B. 22, 3791–3814 (1989)

    Article  Google Scholar 

  11. Chaix P., Iracane D., Lions P.L.: From quantum electrodynamics to mean field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation. J. Phys. B. 22, 3815–3828 (1989)

    Article  ADS  Google Scholar 

  12. Dietz K., Hess B.A.: Hartree–Fock-type equations in relativistic quantum electrodynamics with non-linear gauge fixing. J. Phys. E At. Mol. Opt. Phys. 24, 1129–1142 (1991)

    Article  ADS  Google Scholar 

  13. Dolbeault J., Esteban M.J., Séré E.: On the eigenvalues of operators with gaps. Application to Dirac operators. J. Funct. Anal. 174(1), 208–226 (2000)

    MATH  Google Scholar 

  14. Dirac P.A.M.: The quantum theory of the electron. Proc. R. Soc. A 117, 610–624 (1928)

    Article  ADS  MATH  Google Scholar 

  15. Dirac P.A.M.: A theory of electrons and protons. Proc. R. Soc. A 126, 360–365 (1930)

    Article  ADS  MATH  Google Scholar 

  16. Dirac, P.A.M.: Théorie du positron. Solvay report, pp.203–212 (1934). Gauthier-Villars, Paris. XXV, 353 S

  17. Dirac P.A.M.: Discussion of the infinite distribution of electrons in the theory of the positron. Proc. Camb. Philos. Soc. 30, 150–163 (1934)

    Article  ADS  MATH  Google Scholar 

  18. Engel E., Dreizler R.M.: Field-theoretical approach to a relativistic Thomas–Fermi–Dirac–Weisäcker model. Phys. Rev. A 35(9), 3607–3618 (1987)

    Article  ADS  Google Scholar 

  19. Esteban M.J., Séré E.: Solutions of the Dirac–Fock equations for atoms and molecules. Commun. Math. Phys. 203, 499–530 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Esteban M.J., Séré E.: Nonrelativistic limit of the Dirac–Fock equations. Ann. Henri Poincaré 2(5), 941–961 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Esteban M.J., Séré E.: A max-min principle for the ground state of the Dirac–Fock functional. Contemp. Math. 307, 135–141 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Foldy L.L., Eriksen E.: Some physical consequences of vacuum polarization. Phys. Rev. 95(4), 1048–1051 (1954)

    Article  ADS  MATH  Google Scholar 

  23. Ghoussoub N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge University Press, London (1993)

    Book  MATH  Google Scholar 

  24. Glauber R., Rarita W., Schwed P.: Vacuum polarization effects on energy levels in μ-mesonic atoms. Phys. Rev. 120(2), 609–613 (1960)

    Article  ADS  MATH  Google Scholar 

  25. Gomberoff L., Tolmachev V.: Hartree–Fock approximation in quantum electrodynamics. Phys. Rev. D 3(8), 1796–1804 (1971)

    Article  ADS  Google Scholar 

  26. Griesemer M., Lieb E.H., Loss M.: Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145(3), 557–595 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Hainzl C., Lewin M., Séré E.: Existence of a stable polarized vacuum in the Bogoliubov–Dirac–Fock approximation. Commun. Math. Phys. 257, 515–562 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hainzl C., Lewin M., Séré E.: Self-consistent solution for the polarized vacuum in a no-photon QED model. J. Phys. A Math. Gen. 38, 4483–4499 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Hainzl C., Lewin M., Solovej J.P.: The mean-field approximation in quantum electrodynamics. The no-photon case. Commun. Pure Appl. Math. 60(4), 546–596 (2007)

    Article  MATH  Google Scholar 

  30. Hamm A., Schütte D.: How to remove divergences from the QED-Hartree approximation. J. Phys. A Math. Gen. 23, 3969–3982 (1990)

    Article  ADS  Google Scholar 

  31. Heisenberg W.: Bemerkungen zur Diracschen Theorie des Positrons. Z. Phys. 90, 209–223 (1934)

    Article  ADS  MATH  Google Scholar 

  32. Hunziker W.: On the spectra of Schrödinger multiparticle Hamiltonians. Helv. Phys. Acta 39, 451–462 (1966)

    MathSciNet  MATH  Google Scholar 

  33. Kato T.: Perturbation Theory for Linear Operators. Springer, Heidelberg (1966)

    Book  MATH  Google Scholar 

  34. Kato, T.: Notes on projections and perturbation theory. Technical report No 9, University of California (1955)

  35. Klaus M.: Non-regularity of the Coulomb potential in quantum electrodynamics. Helv. Phys. Acta 53, 36–39 (1980)

    MathSciNet  Google Scholar 

  36. Klaus M., Scharf G.: The regular external field problem in quantum electrodynamics. Helv. Phys. Acta 50, 779–802 (1977)

    MathSciNet  Google Scholar 

  37. Lieb E.H.: Variational principle for Many-Fermion systems. Phys. Rev. Lett. 46, 457–459 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  38. Lieb E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A. 29, 3018–3028 (1984)

    Article  ADS  Google Scholar 

  39. Lieb E.H., Loss M.: Existence of atoms and molecules in non-relativistic quantum electrodynamics. Adv. Theor. Math. Phys. 7(4), 667–710 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lieb E.H., Siedentop H.: Renormalization of the regularized relativistic electron–positron field. Commun. Math. Phys. 213(3), 673–683 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Lieb E.H., Simon B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  42. Lions, P.-L.: The concentration-compactness method in the Calculus of Variations. The locally compact case. Part. I: Anal. non-linéaire, Ann. IHP 1, 109–145 (1984). Part. II: Anal. non-linéaire, Ann. IHP 1, 223–283 (1984)

  43. Lions P.-L.: Solutions of Hartree–Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Mohr P.J., Plunien G., Soff G.: QED corrections in heavy atoms. Phys. Rep. 293(5&6), 227–372 (1998)

    Article  ADS  Google Scholar 

  45. Nenciu G.: Existence of spontaneous pair creation in the external field approximation of Q.E.D. Commun. Math. Phys. 109, 303–312 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Paturel E.: Solutions of the Dirac equations without projector. Ann. Henri Poincaré 1, 1123–1157 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Reinhard P.-G., Greiner W.: Quantum electrodynamics of strong fields. Rep. Prog. Phys. 40, 219–295 (1977)

    Article  ADS  Google Scholar 

  48. Reinhard P.-G., Greiner W., Arenhövel H.: Electrons in strong external fields. Nucl. Phys. A, 166, 173–197 (1971)

    Article  ADS  Google Scholar 

  49. Reinhardt J., Müller B., Greiner W.: Theory of positron production in heavy-ion collision. Phys. Rev. A, 24(1), 103–128 (1981)

    Article  ADS  Google Scholar 

  50. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. Academic Press, Inc., New York, 1980

    MATH  Google Scholar 

  51. Ruijsenaars S.N.M.: On Bogoliubov transformations for systems of relativistic charged particles. J. Math. Phys. 18(3), 517–526 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  52. Scharf G., Seipp H.P.: Charged vacuum, spontaneous positron production and all that. Phys. Lett. 108B(3), 196–198 (1982)

    Article  ADS  Google Scholar 

  53. Schwinger J.: Quantum electrodynamics I. A covariant formulation. Phys. Rev. 74(10), 1439–1461 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Schwinger J.: Quantum electrodynamics II. Vacuum polarization and self-energy. Phys. Rev. 75(4), 651–679 (1949)

    MATH  Google Scholar 

  55. Schwinger J.: On Gauge invariance and vacuum polarization. Phys. Rev. II. Ser. 82(5), 664–679 (1951)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Seiler E., Simon B.: Bounds in the Yukawa2 quantum field theory: upper bound on the pressure, Hamiltonian bound and linear lower bound. Commun. Math. Phys. 45, 99–114 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  57. Simon, B.: Trace ideals and their applications. London Mathematical Society Lecture Notes Series, vol. 35. Cambridge University Press, London, 1979

  58. Swirles B.: The relativistic self-consistent field. Proc. R. Soc. A 152, 625–649 (1935)

    Article  ADS  MATH  Google Scholar 

  59. Thaller B.: The Dirac Equation. Springer, Heidelberg (1992)

    Book  MATH  Google Scholar 

  60. Tix C.: Lower bound for the ground state energy of the no-pair Hamiltonian. Phys. Lett. B 405, 293–296 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  61. Tix C.: Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall. Bull. Lond. Math. Soc. 30(3), 283–290 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  62. Van Winter, C.: Theory of finite systems of particles. I. The Green function. Mat.-Fys. Skr. Danske Vid. Selsk. 2(8), (1964)

  63. Zhislin G.M.: A study of the spectrum of the Schrödinger operator for a system of several particles (Russian). Trudy Moskov. Mat. Obšč9, 81–120 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Séré.

Additional information

Communicated by G. Friesecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hainzl, C., Lewin, M. & Séré, É. Existence of Atoms and Molecules in the Mean-Field Approximation of No-Photon Quantum Electrodynamics. Arch Rational Mech Anal 192, 453–499 (2009). https://doi.org/10.1007/s00205-008-0144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0144-2

Keywords

Navigation