Skip to main content
Log in

Existence of Hartree–Fock excited states for atoms and molecules

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

For neutral and positively charged atoms and molecules, we prove the existence of infinitely many Hartree–Fock critical points below the first energy threshold (that is, the lowest energy of the same system with one electron removed). This is the equivalent, in Hartree–Fock theory, of the famous Zhislin–Sigalov theorem which states the existence of infinitely many eigenvalues below the bottom of the essential spectrum of the N-particle linear Schrödinger operator. Our result improves a theorem of Lions in 1987 who already constructed infinitely many Hartree–Fock critical points, but with much higher energy. Our main contribution is the proof that the Hartree–Fock functional satisfies the Palais–Smale property below the first energy threshold. We then use minimax methods in the N-particle space, instead of working in the one-particle space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The notation \(f\in L^{3/2}+L^\infty _\varepsilon \) means that for any \(\varepsilon >0\) we can write \(f=f_{3/2}+f_\infty \) with \(\Vert f_\infty \Vert _{L^\infty }\leqslant \varepsilon \), see [45]. Such potentials are relative form-compact (hence infinitesimal form-bounded) perturbations of \(-\Delta \) by [44, Sec. X.2] and [45, Sec. XIII.4].

References

  1. Ambrosetti, A., Rabinowitz, P.: Dual variation methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  Google Scholar 

  2. Anantharaman, A., Cancès, E.: Existence of minimizers for Kohn–Sham models in quantum chemistry. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2425–2455 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bach, V.: Error bound for the Hartree–Fock energy of atoms and molecules. Commun. Math. Phys. 147, 527–548 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bach, V.: Accuracy of mean field approximations for atoms and molecules. Commun. Math. Phys. 155, 295–310 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bach, V., Lieb, E.H., Loss, M., Solovej, J.P.: There are no unfilled shells in unrestricted Hartree–Fock theory. Phys. Rev. Lett. 72, 2981–2983 (1994)

    Article  ADS  Google Scholar 

  6. Bach, V., Lieb, E.H., Solovej, J.P.: Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76, 3–89 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bahri, A.: Une méthode perturbative en théorie de Morse, Chap. V. Thèse de Doctorat d’État, Univ. Pierre et Marie Curie (1981)

  8. Bahri, A., Lions, P.-L.: Remarques sur la théorie variationnelle des points critiques et applications. C. R. Acad. Sci. Paris Sér. I Math. 301, 145–147 (1985)

    MathSciNet  MATH  Google Scholar 

  9. Bahri, A., Lions, P.-L.: Morse index of some min–max critical points. I. Application to multiplicity results. Commun. Pure Appl. Math. 41, 1027–1037 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barca, G.M.J., Gilbert, A.T.B., Gill, P.M.W.: Communication: Hartree–Fock description of excited states of H2. J. Chem. Phys. 141, 111104 (2014)

    Article  ADS  Google Scholar 

  11. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82, 347–375 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Cancès, É., Galicher, H., Lewin, M.: Computing electronic structures: a new multiconfiguration approach for excited states. J. Comput. Phys. 212, 73–98 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Coffman, C.V.: Lyusternik–Schnirelman theory: complementary principles and the Morse index. Nonlinear Anal. 12, 507–529 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Esteban, M.J., Lewin, M., Séré, É.: Variational methods in relativistic quantum mechanics. Bull. Am. Math. Soc. (N.S.) 45, 535–593 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Esteban, M.J., Séré, É.: Stationary states of the nonlinear Dirac equation: a variational approach. Commun. Math. Phys. 171, 323–350 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Esteban, M.J., Séré, É.: Solutions of the Dirac–Fock equations for atoms and molecules. Commun. Math. Phys. 203, 499–530 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Fang, G.: Morse indices of critical manifolds generated by min–max methods with compact Lie group actions and applications. Commun. Pure Appl. Math. 48, 1343–1368 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fang, G., Ghoussoub, N.: Second-order information on Palais–Smale sequences in the mountain pass theorem. Manuscr. Math. 75, 81–95 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fang, G., Ghoussoub, N.: Morse-type information on Palais–Smale sequences obtained by min–max principles. Commun. Pure Appl. Math. 47, 1595–1653 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fefferman, C.L., Seco, L.A.: Asymptotic neutrality of large ions. Commun. Math. Phys. 128, 109–130 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Friesecke, G.: The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Ration. Mech. Anal. 169, 35–71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghoussoub, N.: Location, multiplicity and Morse indices of min–max critical points. J. Reine Angew. Math. 417, 27–76 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge Tracts in Mathematics, vol. 107. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  24. Hofer, H.: A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem. J. Lond. Math. Soc. (2) 31, 566–570 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hunziker, W.: On the spectra of Schrödinger multiparticle Hamiltonians. Helv. Phys. Acta 39, 451–462 (1966)

    MathSciNet  MATH  Google Scholar 

  26. Lazer, A.C., Solimini, S.: Nontrivial solutions of operator equations and Morse indices of critical points of min–max type. Nonlinear Anal. 12, 761–775 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lenzmann, E., Lewin, M.: Dynamical ionization bounds for atoms. Anal. PDE 6, 1183–1211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Léon, J.: Excited states for Coulomb systems in the Hartree–Fock approximation. Commun. Math. Phys. 120, 261–268 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lewin, M.: The multiconfiguration methods in quantum chemistry: Palais–Smale condition and existence of minimizers. C. R. Math. Acad. Sci. Paris 334, 299–304 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lewin, M.: Solutions of the multiconfiguration equations in quantum chemistry. Arch. Ration. Mech. Anal. 171, 83–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lewin, M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, C., Lu, J., Yang, W.: Gentlest ascent dynamics for calculating first excited state and exploring energy landscape of Kohn–Sham density functionals. J. Chem. Phys. 143, 224110 (2015)

    Article  ADS  Google Scholar 

  33. Lieb, E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)

    Article  ADS  Google Scholar 

  34. Lieb, E.H., Sigal, I.M., Simon, B., Thirring, W.: Approximate neutrality of large-\(Z\) ions. Commun. Math. Phys. 116, 635–644 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  35. Lieb, E.H., Simon, B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  36. Lions, P.-L.: Sur l’existence d’états excités dans la théorie de Hartree–Fock. C. R. Acad. Sci. Paris Sér. I Math. 294, 377–379 (1982)

    MathSciNet  MATH  Google Scholar 

  37. Lions, P.-L.: The concentration–compactness principle in the calculus of variations. The locally compact case, part I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–149 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Lions, P.-L.: The concentration–compactness principle in the calculus of variations. The locally compact case, part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Lions, P.-L.: Solutions of Hartree–Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Lions, P.-L.: Hartree–Fock and related equations. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. IX (Paris, 1985–1986), vol. 181 of Pitman Res. Notes in Mathematics Series, pp. 304–333. Longman Sci. Tech., Harlow (1988)

  41. Nam, P.T.: New bounds on the maximum ionization of atoms. Commun. Math. Phys. 312, 427–445 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Paturel, E.: Solutions of the Dirac–Fock equations without projector. Ann. Henri Poincaré 1, 1123–1157 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1986)

  44. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  45. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  46. Ruskai, M.B.: Absence of discrete spectrum in highly negative ions: II. Extension to fermions. Commun. Math. Phys. 85, 325–327 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  47. Seco, L.A., Sigal, I.M., Solovej, J.P.: Bound on the ionization energy of large atoms. Commun. Math. Phys. 131, 307–315 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Sigal, I.M.: Geometric methods in the quantum many-body problem. Non existence of very negative ions. Commun. Math. Phys. 85, 309–324 (1982)

    Article  ADS  MATH  Google Scholar 

  49. Sigal, I.M.: How many electrons can a nucleus bind? Ann. Phys. 157, 307–320 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  50. Solimini, S.: Morse index estimates in min–max theorems. Manuscr. Math. 63, 421–453 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  51. Solovej, J.P.: Proof of the ionization conjecture in a reduced Hartree–Fock model. Invent. Math. 104, 291–311 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Solovej, J.P.: The Size of Atoms in Hartree–Fock Theory, pp. 321–332. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  53. Solovej, J.P.: The ionization conjecture in Hartree–Fock theory. Ann. Math. (2) 158, 509–576 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4th edn. Springer, New York (2008)

    MATH  Google Scholar 

  55. Tanaka, K.: Morse indices at critical points related to the symmetric mountain pass theorem and applications. Commun. Partial Differ. Equ. 14, 99–128 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tassi, M., Theophilou, I., Thanos, S.: Hartree–Fock calculation for excited states. Int. J. Quantum Chem. 113, 690–693 (2013)

    Article  Google Scholar 

  57. Van Winter, C.: Theory of finite systems of particles. I. The green function. Mat.-Fys. Skr. Danske Vid. Selsk. 2(8), 60 (1964)

  58. Viterbo, C.: Indice de Morse des points critiques obtenus par minimax. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 221–225 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Vugalter, S., Zhislin, G.M.: Finiteness of a discrete spectrum of many-particle Hamiltonians in symmetry spaces (coordinate and momentum representations). Teoret. Mat. Fiz. 32, 70–87 (1977)

    MathSciNet  Google Scholar 

  60. Yafaev, D.: On the point spectrum in the quantum-mechanical many-body problem. Math. USSR Izv. 40, 861–896 (1976). English translation

    MATH  Google Scholar 

  61. Zhislin, G.M.: Discussion of the spectrum of Schrödinger operators for systems of many particles. Trudy Moskovskogo matematiceskogo obscestva 9, 81–120 (1960). (in Russian)

    MathSciNet  Google Scholar 

  62. Zhislin, G.M., Sigalov, A.G.: The spectrum of the energy operator for atoms with fixed nuclei on subspaces corresponding to irreducible representations of the group of permutations. Izv. Akad. Nauk SSSR Ser. Mat. 29, 835–860 (1965)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank Éric Séré for useful comments. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement MDFT No. 725528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Lewin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewin, M. Existence of Hartree–Fock excited states for atoms and molecules. Lett Math Phys 108, 985–1006 (2018). https://doi.org/10.1007/s11005-017-1019-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-1019-y

Keywords

Mathematics Subject Classification

Navigation