Skip to main content
Log in

Harnessing machine learning to predict cytochrome P450 inhibition through molecular properties

  • In silico
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cytochrome P450 enzymes are a superfamily of enzymes responsible for the metabolism of a variety of medicines and xenobiotics. Among the Cytochrome P450 family, five isozymes that include 1A2, 2C9, 2C19, 2D6, and 3A4 are most important for the metabolism of xenobiotics. Inhibition of any of these five CYP isozymes causes drug-drug interactions with high pharmacological and toxicological effects. So, the inhibition or non-inhibition prediction of these isozymes is of great importance. Many techniques based on machine learning and deep learning algorithms are currently being used to predict whether these isozymes will be inhibited or not. In this study, three different molecular or substructural properties that include Morgan, MACCS and Morgan (combined) and RDKit of the various molecules are used to train a distinct SVM model against each isozyme (1A2, 2C9, 2C19, 2D6, and 3A4). On the independent dataset, Morgan fingerprints provided the best results, while MACCS and Morgan (combined) achieved comparable results in terms of balanced accuracy (BA), sensitivity (Sn), and Mathews correlation coefficient (MCC). For the Morgan fingerprints, balanced accuracies (BA), Mathews correlation coefficients (MCC), and sensitivities (Sn) against each CYPs isozyme, 1A2, 2C9, 2C19, 2D6, and 3A4 on an independent dataset ranged between 0.81 and 0.85, 0.61 and 0.70, 0.72 and 0.83, respectively. Similarly, on the independent dataset, MACCS and Morgan (combined) fingerprints achieved competitive results in terms of balanced accuracies (BA), Mathews correlation coefficients (MCC), and sensitivities (Sn) against each CYPs isozyme, 1A2, 2C9, 2C19, 2D6, and 3A4, which ranged between 0.79 and 0.85, 0.59 and 0.69, 0.69 and 0.82, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas Z, Rehman MU, Tayara H, Chong KT (2023a) ORI-explorer: a unified cell-specific tool for origin of replication sites prediction by feature fusion. Bioinformatics 39(11):btad664

  • Abbas Z, ur Rehman M, Tayara H, Zou Q, Chong KT (2023b) XGBoost framework with feature selection for the prediction of RNA N5-methylcytosine sites. Mol Ther 31:2543–2551

  • Ahmad W, Tayara H, Chong KT (2023) Attention-based graph neural network for molecular solubility prediction. ACS Omega 8(3):3236–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad W, Tayara H, Shim H, Chong KT (2024) SolPredictor: predicting solubility with residual gated graph neural network. Int J Mol Sci 25(2):715

    Article  PubMed  PubMed Central  Google Scholar 

  • Ai D, Cai H, Wei J, Zhao D, Chen Y, Wang L (2023) DEEPCYPs: a deep learning platform for enhanced cytochrome P450 activity prediction. Front Pharmacol 14:1099093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amarappa S, Sathyanarayana S (2014) Data classification using support vector machine (SVM), a simplified approach. Int J Electron Comput Sci Eng 3:435–445

    Google Scholar 

  • Arimoto R (2006) Computational models for predicting interactions with cytochrome P450 enzyme. Curr Top Med Chem 6(15):1609–1618

    Article  CAS  PubMed  Google Scholar 

  • Banerjee P, Dehnbostel FO, Preissner R (2018) Prediction is a balancing act: importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets. Front Chem 6:387941

    Article  Google Scholar 

  • Banerjee P, Dunkel M, Kemmler E, Preissner R (2020) SuperCYPspred—a web server for the prediction of cytochrome activity. Nucleic Acids Res 48(W1):W580–W585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhagat M, Bakariya B (2022) Implementation of logistic regression on diabetic dataset using train-test-split, k-fold and stratified k-fold approach. Natl Acad Sci Lett 45(5):401–404

    Article  CAS  Google Scholar 

  • Boughorbel S, Jarray F, El-Anbari M (2017) Optimal classifier for imbalanced data using Matthews correlation coefficient metric. PLoS ONE 12(6):e0177678

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zeng L, Wang Y, Tolleson WH, Knox B, Chen S, Ren Z, Guo L, Mei N, Qian F, Huang K, Liu D, Tong W, Yu D, Ning B (2017) The expression, induction and pharmacological activity of CYP1A2 are post-transcriptionally regulated by microRNA hsa-miR-132-5p. Biochem Pharmacol 145:178–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Yu Y, Shen J, Yang L, Li W, Liu G, Lee PW, Tang Y (2011) Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. J Chem Inf Model 51(5):996–1011

    Article  CAS  PubMed  Google Scholar 

  • Corsini A, Bortolini M (2013) Drug-induced liver injury: the role of drug metabolism and transport. J Clin Pharmacol 53(5):463–474

    Article  CAS  PubMed  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Article  Google Scholar 

  • Gaffar S, Hassan MT, Tayara H, Chong KT (2024) IF-AIP: a machine learning method for the identification of anti-inflammatory peptides using multi-feature fusion strategy. Comput Biol Med 168:107724

    Article  CAS  PubMed  Google Scholar 

  • Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrián-Uhalte E et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 45(D1):D945–D954

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP (2008) Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21(1):70–83

    Article  CAS  PubMed  Google Scholar 

  • Hassan MT, Tayara H, Chong KT (2023) Meta-IL4: an ensemble learning approach for IL-4-inducing peptide prediction. Methods 217:49–56

    Article  CAS  PubMed  Google Scholar 

  • Hassan MT, Tayara H, Chong KT (2024) An integrative machine learning model for the identification of tumor T-cell antigens. BioSystems 237:105177

    Article  CAS  PubMed  Google Scholar 

  • Kato H (2020) Computational prediction of cytochrome P450 inhibition and induction. Drug Metab Pharmacokinet 35(1):30–44

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan M (2019) Drug metabolism. In: Raj GM, Raveendran R (eds) Introduction to basics of pharmacology and toxicology: volume 1: general and molecular pharmacology: principles of drug action. Springer, Singapore, 99–116

    Chapter  Google Scholar 

  • Landrum G (2013) RDKit documentation. Release 1(1–79):4

    Google Scholar 

  • Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15):1200–1205

    Article  CAS  PubMed  Google Scholar 

  • Li X, Xu Y, Lai L, Pei J (2018) Prediction of human cytochrome P450 inhibition using a multitask deep autoencoder neural network. Mol Pharm 15(10):4336–4345

    Article  CAS  PubMed  Google Scholar 

  • Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Phys 76(3):391–396

    Google Scholar 

  • Mahesh T, Geman O, Margala M, Guduri M et al (2023) The stratified K-folds cross-validation and class-balancing methods with high-performance ensemble classifiers for breast cancer classification. Healthc Anal 4:100247

    Article  Google Scholar 

  • National Center for Advancing Translational Sciences (NCATS) (2007) Bioassay record: P450-CYP1A2. PubChem. Accessed 5 Jan 2024

  • National Center for Advancing Translational Sciences (NCATS) (2009) Cytochrome panel assay with activity outcomes. PubChem BioAssay AID 1851. Accessed 5 Jan 2024

  • National Center for Advancing Translational Sciences (NCATS) (2010a) qHTS assay for inhibitors and substrates of cytochrome P450 2C19. PubChem. Accessed 5 Jan 2024

  • National Center for Advancing Translational Sciences (NCATS) (2010b) qHTS assay for inhibitors and substrates of cytochrome P450 2C9. PubChem. Accessed 5 Jan 2024

  • National Center for Advancing Translational Sciences (NCATS) (2010c) qHTS assay for inhibitors and substrates of cytochrome P450 2D6. PubChem. Accessed 5 Jan 2024

  • National Center for Advancing Translational Sciences (NCATS) (2010d) qHTS assay for inhibitors and substrates of cytochrome P450 3A4. PubChem. Accessed 5 Jan 2024

  • Ogu CC, Maxa JL (2000) Drug interactions due to cytochrome P450. In: Proceedings (Baylor University. Medical Center), vol 13 no. 4. p 421

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: Machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Plonka W, Stork C, Šícho M, Kirchmair J (2021) CYPlebrity: machine learning models for the prediction of inhibitors of cytochrome P450 enzymes. Bioorg Med Chem 46:116388

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Veith H, Xia M, Austin CP, Huang R (2011) Predictive models for cytochrome P450 isozymes based on quantitative high throughput screening data. J Chem Inf Model 51(10):2474–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thölke P, Mantilla-Ramos Y-J, Abdelhedi H, Maschke C, Dehgan A, Harel Y, Kemtur A, Berrada LM, Sahraoui M, Young T et al (2023) Class imbalance should not throw you off balance: choosing the right classifiers and performance metrics for brain decoding with imbalanced data. NeuroImage 277:120253

    Article  PubMed  Google Scholar 

  • Xiong Y, Qiao Y, Kihara D, Zhang H-Y, Zhu X, Wei D-Q (2019) Survey of machine learning techniques for prediction of the isoform specificity of cytochrome P450 substrates. Curr Drug Metab 20(3):229–235

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, Huai C, Shen L, Zhang N, He L et al (2021) Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci 22(23):12808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NO. 2020R1A2C2005612) and (NO. 2022R1G1A1004613) and in part by the Korean Big Data Station (K-BDS) with the computing resources, including the technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hilal Tayara or Kil To Chong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (docx 671 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahid, H., Tayara, H. & Chong, K.T. Harnessing machine learning to predict cytochrome P450 inhibition through molecular properties. Arch Toxicol (2024). https://doi.org/10.1007/s00204-024-03756-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00204-024-03756-9

Keywords

Navigation