Skip to main content
Log in

The role of GATA switch in benzene metabolite hydroquinone inhibiting erythroid differentiation in K562 cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The phenolic metabolite of benzene, hydroquinone (HQ), has potential risks for hematological disorders and hematotoxicity in humans. Previous studies have revealed that reactive oxygen species, DNA methylation, and histone acetylation participate in benzene metabolites inhibiting erythroid differentiation in hemin-induced K562 cells. GATA1 and GATA2 are crucial erythroid-specific transcription factors that exhibit dynamic expression patterns during erythroid differentiation. We investigated the role of GATA factors in HQ-inhibited erythroid differentiation in K562 cells. When K562 cells were induced with 40 μM hemin for 0–120 h, the mRNA and protein levels of GATA1 and GATA2 changed dynamically. After exposure to 40 μM HQ for 72 h, K562 cells were induced with 40 μM hemin for 48 h. HQ considerably reduced the percentage of hemin-induced Hb-positive cells, decreased the GATA1 mRNA, protein, and occupancy levels at α-globin and β-globin gene clusters, and increased the GATA2 mRNA and protein levels significantly. ChIP-seq analysis revealed that HQ reduced GATA1 occupancy, and increased GATA2 occupancy at most gene loci in hemin-induced K562 cells. And GATA1 and GATA2 might play essential roles in the erythroid differentiation protein interaction network. These results elucidate that HQ decreases GATA1 occupancy and increases GATA2 occupancy at the erythroid gene loci, thereby downregulating GATA1 and upregulating GATA2 expression, which in turn modulates the expression of erythroid genes and inhibits erythroid differentiation. This partially explains the mechanism of benzene hematotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon reasonable request.

References

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (Project no. 81573192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong-Chun Yi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1169 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, CH., Yang, SQ., Zhang, YJ. et al. The role of GATA switch in benzene metabolite hydroquinone inhibiting erythroid differentiation in K562 cells. Arch Toxicol 97, 2169–2181 (2023). https://doi.org/10.1007/s00204-023-03541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-023-03541-0

Keywords

Navigation