Skip to main content
Log in

p21-activated kinase 1 (PAK1) as a therapeutic target for cardiotoxicity

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The p21-activated kinase 1 (PAK1), an effector protein of the small G protein Rac and cell division cycle protein 42 (Cdc42), is highly expressed in cardiac tissue. Although a large number of studies have explored the molecular basis and biological function of PAK1, research on PAK1 as a therapeutic target for cardiotoxicity remains in a stage of continuous innovation, and further clarification of its role in cardiotoxicity is required. In this review, we examine the important role of PAK1 in the programmed death (apoptosis, autophagy, and pyroptosis) of cardiomyocytes, and its involvement in oxidative stress and inflammatory responses, which are based on mitochondrial dysfunction and calcium homeostasis imbalance. We also summarize the related signaling pathways through which PAK1 may cause oxidative stress and inflammatory response in cardiotoxicity, and discuss the PAK1-mediated contributions of the gut microbiome and micro RNAs to cardiotoxicity. We propose that PAK1 holds great promise for novel therapeutic strategies to facilitate improvements in the treatment of complex and diverse cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data used to support the findings of this study are included within the article.

Abbreviations

Cdc42:

Cell division cycle 42 (GTP-binding protein, 25 kDa)

mTOR:

Mammalian target of rapamycin

Akt:

Protein kinase B

AMPK:

Adenosine 5′-monophosphate (AMP)-activated protein kinase

BAD:

Bcl-2 antagonist of cell death

Bcl-2:

B-cell lymphoma 2

Ca2 + :

Calcium ions

Ccnd1:

Cyclin D1

CoB1:

Cochlioquinone B derivative

CVDs:

Cardiovascular diseases

eNOS:

Endothelial nitric oxide synthase

EPCs:

Endothelial progenitor cells

Erk1/2:

Extracellular signal-regulated kinase 1/2

ETC:

Electron transport chain

FasL:

Fas ligand

Foxo:

Forkhead box

FTY720:

Fingolimod

Grb2:

Growth-factor receptor-bound protein 2

HG:

High glucose

HIF-1A:

Hypoxia inducible factor-1A

IKK:

IκB kinase

IL-1β:

Interleukin-1β

IL-3:

Interleukin 3

JNK:

C-Jun NH2-terminal kinase

Klf2:

Kruppel-like factor 2

LCGTs:

Large clostridial glucosylating toxins

LPS:

Lipopolysaccharide

MAPKs:

Mitogen-activated protein kinases

miRNA:

MicroRNA

MKP1:

Mitogen-activated protein kinase phosphatase-1

MLCK:

Myosin light chain kinase

mPTP:

Mitochondrial permeability transition pore

NCX:

Na +/Ca2+ exchanger

NF-κB:

Nuclear factor kappa-B

NLRP3:

NLR family pyrin domain containing 3

NOX:

NADPH oxidase

Pak1:

P21-activated kinase 1

PAKs:

The p21-activated kinases

PAMPs:

Pathogen-associated molecular patterns

PCD:

Programmed cell death

PDE2:

Phosphodiesterases-2

PDGF:

Platelet-derived growth factor

PDK1:

3-Phosphoinositide-dependent protein kinase 1

PGAM-B:

Phosphoglycerate mutase-B

PI3K:

Phosphatidylinositol 3-kinase

PP2A:

Protein phosphatase 2A

PRRs:

Pattern recognition receptors

Rac1:

Ras-related C3 botulinum toxin substrate 1

Ras/Raf/MEK/ERK:

A mitogen-activated protein kinase, MAPK pathway

ROS:

Reactive oxygen species

SCFAs:

Short-chain fatty acids

SIRT1:

Sirtuin 1

Src:

Src kinase

SubAB:

Subtilase cytotoxin

TAK1:

TGFβ-activated kinase 1

TMAO:

Trimethylamine N-oxide

TNFα:

Tumor necrosis factor-α

TRAF6:

TNF receptor-associated factor 6

UA:

Urolithin A

VEGF:

Vascular endothelial growth factor

VMs:

Ventricular myocytes

Wasp:

Wiskott–Aldrich syndrome protein

References

  • Afonina IS, Zhong Z, Karin M, Beyaert R (2017) Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol 18(8):861–869

    Article  CAS  PubMed  Google Scholar 

  • Ahn M, Oh E, McCown EM, Wang X, Veluthakal R, Thurmond DC (2021) A requirement for PAK1 to support mitochondrial function and maintain cellular redox balance via electron transport chain proteins to prevent β-cell apoptosis. Metabolism 115:154431

    Article  CAS  PubMed  Google Scholar 

  • Alauddin M, Okumura T, Rajaxavier J, Khozooei S, Pöschel S, Takeda S, Singh Y, Brucker SY, Wallwiener D, Koch A, Salker MS (2020) Gut bacterial metabolite urolithin a decreases actin polymerization and migration in cancer cells. Mol Nutr Food Res 64(7):e1900390

    Article  PubMed  Google Scholar 

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269

    Article  CAS  PubMed  Google Scholar 

  • Amirthalingam M, Palanisamy S, Tawata S (2021) p21-activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 71:101443

    Article  CAS  PubMed  Google Scholar 

  • Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183(2):787–791

    Article  CAS  PubMed  Google Scholar 

  • Bedoui S, Herold MJ, Strasser A (2020) Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol 21(11):678–695

    Article  CAS  PubMed  Google Scholar 

  • Bhagat A, Kleinerman ES (2020) Anthracycline-induced cardiotoxicity: causes, mechanisms, and prevention. Adv Exp Med Biol 1257:181–192

    Article  CAS  PubMed  Google Scholar 

  • Biasizzo M, Kopitar-Jerala N (2020) Interplay between NLRP3 inflammasome and autophagy. Front Immunol 9(11):591803

    Article  Google Scholar 

  • Bu H, Tan S, Yuan B, Huang X, Jiang J, Wu Y, Jiang J, Li R (2020) Therapeutic potential of IBP as an autophagy inducer for treating lung cancer via blocking PAK1/Akt/mTOR signaling. Mol Ther Oncol 4(20):82–93

    Google Scholar 

  • Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, Molkentin JD (2000) The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19(23):6341–6350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Z, Xiao Q, Feng Q, Yang Z (2010) PKB/Akt signaling in heart development and disease. Front Biosci (elite Ed) 2:1485–1491

    Google Scholar 

  • Chen S, Tang C, Ding H, Wang Z, Liu X, Chai Y, Jiang W, Han Y, Zeng H (2020) Maf1 ameliorates sepsis-associated encephalopathy by suppressing the NF-kB/NLRP3 inflammasome signaling pathway. Front Immunol 23(11):594071

    Article  Google Scholar 

  • Chen T, Zhang X, Zhu G, Liu H, Chen J, Wang Y, He X (2020) Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine (baltimore) 99(38):e22241

    Article  CAS  Google Scholar 

  • Craciun S, Balskus EP (2012) Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci U S A 109:21307–21312. https://doi.org/10.1073/pnas.1215689109

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis RT 3rd, Simon JN, Utter M, Mungai P, Alvarez MG, Chowdhury SA, Heydemann A, Ke Y, Wolska BM, Solaro RJ (2015) Knockout of p21-activated kinase-1 attenuates exercise-induced cardiac remodelling through altered calcineurin signalling. Cardiovasc Res 108(3):335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeSantiago J, Bare DJ, Xiao L, Ke Y, Solaro RJ, Banach K (2014) p21-Activated kinase1 (Pak1) is a negative regulator of NADPH-oxidase 2 in ventricular myocytes. J Mol Cell Cardiol 67:77–85

    Article  CAS  PubMed  Google Scholar 

  • DeSantiago J, Bare DJ, Varma D, Solaro RJ, Arora R, Banach K (2018) Loss of p21-activated kinase 1 (Pak1) promotes atrial arrhythmic activity. Heart Rhythm 15(8):1233–1241

    Article  PubMed  PubMed Central  Google Scholar 

  • Diebold I, Djordjevic T, Petry A, Hatzelmann A, Tenor H, Hess J, Görlach A (2009) Phosphodiesterase 2 mediates redox-sensitive endothelial cell proliferation and angiogenesis by thrombin via Rac1 and NADPH oxidase 2. Circ Res 104(10):1169–1177

    Article  CAS  PubMed  Google Scholar 

  • Dong LQ, Liu F (2005) PDK2: the missing piece in the receptor tyrosine kinase signaling pathway puzzle. Am J Physiol Endocrinol Metab 289:E187–E196

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Zhuang Q, Ye X, Ning M, Wu S, Lu L, Wan X (2020) Adiponectin inhibits NLRP3 inflammasome activation in nonalcoholic steatohepatitis via AMPK-JNK/ErK1/2-NFκB/ROS signaling pathways. Front Med (lausanne) 5(7):546445

    Article  Google Scholar 

  • Dou Q, Chen HN, Wang K, Yuan K, Lei Y, Li K, Lan J, Chen Y, Huang Z, Xie N, Zhang L, Xiang R, Nice EC, Wei Y, Huang C (2016) Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer Res 76(15):4457–4469

    Article  CAS  PubMed  Google Scholar 

  • Du J, Li Y, Zhao W (2020) Autophagy and Myocardial Ischemia. Adv Exp Med Biol 1207:217–222

    Article  CAS  PubMed  Google Scholar 

  • Dufies O, Doye A, Courjon J, Torre C, Michel G, Loubatier C, Jacquel A, Chaintreuil P, Majoor A, Guinamard RR, Gallerand A, Saavedra PHV, Verhoeyen E, Rey A, Marchetti S, Ruimy R, Czerucka D, Lamkanfi M, Py BF, Munro P, Visvikis O, Boyer L (2021) Escherichia coli Rho GTPase-activating toxin CNF1 mediates NLRP3 inflammasome activation via p21-activated kinases-1/2 during bacteraemia in mice. Nat Microbiol 6(3):401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duttaroy AK (2021) Role of gut microbiota and their metabolites on atherosclerosis, hypertension and human blood platelet function: a review. Nutrients 13(1):144

    Article  CAS  PubMed Central  Google Scholar 

  • Edling CE, Fazmin IT, Chadda KR, Ahmad S, Valli H, Huang CL, Jeevaratnam K (2019) Atrial transcriptional profiles of molecular targets mediating electrophysiological function in aging and Pgc-1β deficient murine hearts. Front Physiol 24(10):497

    Article  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Wetidy MS, Ahmad R, Rady I, Helal H, Rady MI, Vaali-Mohammed MA, Al-Khayal K, Traiki TB, Abdulla MH (2021) Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53–p21 proteins and reactive oxygen species production in colorectal cancer cells. Cell Stress Chaperones 26(3):473–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewer MS, Ewer SM (2010) Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat Rev Cardiol 7(10):564–575

    Article  PubMed  Google Scholar 

  • Fan TJ, Han LH, Cong RS, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (shanghai) 37(11):719–727

    Article  CAS  Google Scholar 

  • Feng X, Zhang H, Meng L, Song H, Zhou Q, Qu C, Zhao P, Li Q, Zou C, Liu X, Zhang Z (2021) Hypoxia-induced acetylation of PAK1 enhances autophagy and promotes brain tumorigenesis via phosphorylating ATG5. Autophagy 17(3):723–742

    Article  CAS  PubMed  Google Scholar 

  • Frank D, Vince JE (2019) Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ 26(1):99–114

    Article  PubMed  Google Scholar 

  • Frost JA, Swantek JL, Stippec S, Yin MJ, Gaynor R, Cobb MH (2000) Stimulation of NFkappa B activity by multiple signaling pathways requires PAK1. J Biol Chem 275(26):19693–19699

    Article  CAS  PubMed  Google Scholar 

  • Gallo S, Vitacolonna A, Bonzano A, Comoglio P, Crepaldi T (2019) ERK: a key player in the pathophysiology of cardiac hypertrophy. Int J Mol Sci 20(9):2164

    Article  CAS  PubMed Central  Google Scholar 

  • Gao M, Fu J, Wang Y (2020) The lncRNA FAL1 protects against hypoxia-reoxygenation- induced brain endothelial damages through regulating PAK1. J Bioenerg Biomembr 52(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Chen W, Yan M, Liu J, Luo H, Wang C, Yang P (2020) Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int J Mol Med 45(1):195–209

    PubMed  Google Scholar 

  • Genth H, Pauillac S, Schelle I, Bouvet P, Bouchier C, Varela-Chavez C, Just I, Popoff MR (2014) Haemorrhagic toxin and lethal toxin from Clostridium sordellii strain vpi9048: molecular characterization and comparative analysis of substrate specificity of the large clostridial glucosylating toxins. Cell Microbiol 16(11):1706–1721

    Article  CAS  PubMed  Google Scholar 

  • Glaser ND, Ke Y, Zhu W, Zhao A, Solaro RJ, Lakatta EG et al (2008) Abstract 1389: PKA constitutes a novel activator of cardiac protective Pak1 signaling. Circulation 118:S319

    Google Scholar 

  • Gottlieb RA, Mentzer RM Jr (2013) Autophagy: an affair of the heart. Heart Fail Rev 18(5):575–584

    Article  CAS  PubMed  Google Scholar 

  • Hamm EE, Voth DE, Ballard JD (2006) Identification of Clostridium difficile toxin B cardiotoxicity using a zebrafish embryo model of intoxication. Proc Natl Acad Sci U S A 103(38):14176–14181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harfouche R, Malak NA, Brandes RP, Karsan A, Irani K, Hussain SN (2005) Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB J 19(12):1728–1730

    Article  CAS  PubMed  Google Scholar 

  • Heianza Y, Qi L (2020) Reply: TMAO changes and coronary heart disease risk: potential impact and study considerations. J Am Coll Cardiol 75(24):3102–3104

    Article  PubMed  Google Scholar 

  • Herrmann J (2020) Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol 17(8):474–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu S, Dong TS, Dalal SR, Wu F, Bissonnette M, Kwon JH, Chang EB (2011) The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS ONE 6(1):e16221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh N, Wang K, Yim M, Dumesny CJ, Sandrin MS, Baldwin GS, Nikfarjam M, He H (2017) Depletion of p21-activated kinase 1 up-regulates the immune system of APC∆14/+ mice and inhibits intestinal tumorigenesis. BMC Cancer 17(1):431

    Article  PubMed  PubMed Central  Google Scholar 

  • Ichikawa R, Kawasaki R, Iwata A, Otani S, Nishio E, Nomura H, Fujii T (2020) MicroRNA-126-3p suppresses HeLa cell proliferation, migration and invasion, and increases apoptosis via the PI3K/PDK1/AKT pathway. Oncol Rep 43(4):1300–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida H, Li K, Yi M, Lemon SM (2007) p21-activated kinase 1 is activated through the mammalian target of rapamycin/p70 S6 kinase pathway and regulates the replication of hepatitis C virus in human hepatoma cells. J Biol Chem 282(16):11836–11848

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Zhuo Y, Guo W, Field J (2005) p21-activated Kinase 1 (Pak1)-dependent phosphorylation of Raf-1 regulates its mitochondrial localization, phosphorylation of BAD, and Bcl-2 association. J Biol Chem 280(26):24698–24705

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Qian Z, Yin J, Xu W, Zhou X (2019) The role of intestinal microbiota in cardiovascular disease. J Cell Mol Med 23(4):2343–2350

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones WK, Brown M, Ren X, He S, McGuinness M (2003) NF-kappaB as an integrator of diverse signaling pathways: the heart of myocardial signaling? Cardiovasc Toxicol 3(3):229–254

    Article  CAS  PubMed  Google Scholar 

  • Kang PM, Izumo S (2003) Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends Mol Med 9(4):177–182

    Article  CAS  PubMed  Google Scholar 

  • Ke Y, Wang X, Jin XY, Solaro RJ, Lei M (2014) PAK1 is a novel cardiac protective signaling molecule. Front Med 8(4):399–403

    Article  PubMed  Google Scholar 

  • Ke Y, Li D, Zhao M et al (2018) Gut flora-dependent metabolite Trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radic Biol Med 116:88–100

    Article  CAS  PubMed  Google Scholar 

  • Kelly ML, Astsaturov A, Chernoff J (2013) Role of p21-activated kinases in cardiovascular development and function. Cell Mol Life Sci 70(22):4223–4228

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Kwon O, Ryu TY, Jung CR, Kim J, Min JK, Kim DS, Son MY, Cho HS (2019) Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. Mol Med Rep 20(2):1569–1574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829

    Article  PubMed  Google Scholar 

  • Krueger SK, Williams DE (2005) Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 106(3):357–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MY, San Martin A, Mehta PK, Dikalova AE, Garrido AM, Datla SR, Lyons E, Krause KH, Banfi B, Lambeth JD, Lassègue B, Griendling KK (2009) Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation. Arterioscler Thromb Vasc Biol 29(4):480–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Q, Yi T, Chen C (2018) NF-κB-Gasdermin D (GSDMD) axis couples oxidative stress and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis following myocardial infarction. Med Sci Monit 24:6044–6052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenneman CG, Sawyer DB (2016) Cardio-Oncology: An Update on Cardiotoxicity of Cancer-Related Treatment. Circ Res 118(6):1008–1020

    Article  CAS  PubMed  Google Scholar 

  • Li QF, Tang DD (2009) Role of p47(phox) in regulating Cdc42GAP, vimentin, and contraction in smooth muscle cells. Am J Physiol Cell Physiol 297(6):C1424–C1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Zhou LY, Gao GF, Jiao JQ, Li PF (2012) Mitochondrial network in the heart. Protein Cell 3(6):410–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Jia Z, Trush MA (2016) Defining ROS in Biology and medicine. React Oxyg Species (apex) 1(1):9–21

    Article  Google Scholar 

  • Li L, Wang S, Li H, Wan J, Zhou Q, Zhou Y, Zhang C (2018) microRNA-96 protects pancreatic β-cell function by targeting PAK1 in gestational diabetes mellitus. BioFactors (oxford, England) 44(6):539–547

    Article  CAS  Google Scholar 

  • Li B, Li M, Li X et al (2019) Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation. Aging (albany NY) 11(24):12546–12567

    Article  CAS  Google Scholar 

  • Li T, Li Y, Liu T, Hu B, Li J, Liu C, Liu T, Li F (2020) Mitochondrial PAK6 inhibits prostate cancer cell apoptosis via the PAK6-SIRT4-ANT2 complex. Theranostics 10(6):2571–2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Yang Y, Wang S, He X, Liu M, Bai B, Tian C, Sun R, Yu T, Chu X (2021) Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol 46:102089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limbu S, Hoang-Trong TM, Prosser BL, Lederer WJ, Jafri MS (2015) Modeling local X-ROS and calcium signaling in the heart. Biophys J 109(10):2037–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Huang H, Lin L, Li W, Huang J (2020) MiR-23a induced the activation of CDC42/PAK1 pathway and cell cycle arrest in human cov434 cells by targeting FGD4. J Ovarian Res 13(1):90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Tang M, Zhang X, Li J, Cao G (2020) Knockdown of miR-665 protects against cardiomyocyte ischemia/reperfusion injury-induced ROS accumulation and apoptosis through the activation of Pak1/Akt signaling in myocardial infarction. Int Heart J 61(2):347–354

    Article  CAS  PubMed  Google Scholar 

  • Lorda-Diez CI, Solis-Mancilla ME, Sanchez-Fernandez C, Garcia-Porrero JA, Hurle JM, Montero JA (2019) Cell senescence, apoptosis and DNA damage cooperate in the remodeling processes accounting for heart morphogenesis. J Anat 234(6):815–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubbers ER, Mohler PJ (2016) Roles and regulation of protein phosphatase 2A (PP2A) in the heart. J Mol Cell Cardiol 101:127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Wei S, Zhang B, Li W (2020) Molecular mechanisms of cardiomyocyte death in drug-induced cardiotoxicity. Front Cell Dev Biol 3(8):434

    Article  Google Scholar 

  • Maejima Y, Isobe M, Sadoshima J (2016) Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol 95:19–25

    Article  CAS  PubMed  Google Scholar 

  • Mao K, Kobayashi S, Jaffer ZM et al (2008) Regulation of Akt/PKB activity by P21-activated kinase in cardiomyocytes. J Mol Cell Cardiol 44(2):429–434

    Article  CAS  PubMed  Google Scholar 

  • Marino A, Hausenloy DJ, Andreadou I, Horman S, Bertrand L, Beauloye C (2021) AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury. Free Radic Biol Med 166:238–254

    Article  CAS  PubMed  Google Scholar 

  • Meng G, Zhou X, Wang M et al (2019) Gut microbe-derived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways. EBioMedicine 44:656–664

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagasawa S, Ogura K, Tsutsuki H, Saitoh H, Moss J, Iwase H, Noda M, Yahiro K (2014) Uptake of shiga-toxigenic Escherichia coli SubAB by HeLa cells requires an actin- and lipid raft-dependent pathway. Cell Microbiol 16(10):1582–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan CJ, Damm P, Prentki M (2011) Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378(9786):169–181

    Article  PubMed  Google Scholar 

  • Noma T, Lemaire A, Naga Prasad SV, Barki-Harrington L, Tilley DG, Chen J et al (2007) Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest 117:2445–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwariaku FE, Liu Z, Zhu X, Nahari D, Ingle C, Wu RF, Gu Y, Sarosi G, Terada LS (2004) NADPH oxidase mediates vascular endothelial cadherin phosphorylation and endothelial dysfunction. Blood 104(10):3214–3220

    Article  CAS  PubMed  Google Scholar 

  • Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, Truong T, Turley H, O’Brien T, Vucic D, Harris AL, Belvin M, Friedman LS, Blackwood EM, Koeppen H, Hoeflich KP (2011) Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci U S A 108(17):7177–7182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ordon JW, Shaw JA, Kirshenbaum LA (2011) Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res 108(9):1122–1132

    Article  Google Scholar 

  • Pan JA, Tang Y, Yu JY, Zhang H, Zhang JF, Wang CQ, Gu J (2019) miR-146a attenuates apoptosis and modulates autophagy by targeting TAF9b/P53 pathway in doxorubicin-induced cardiotoxicity. Cell Death Dis 10(9):668

    Article  PubMed  PubMed Central  Google Scholar 

  • Pi J, Liu J, Zhuang T, Zhang L, Sun H, Chen X, Zhao Q, Kuang Y, Peng S, Zhou X, Yu Z, Tao T, Tomlinson B, Chan P, Tian Y, Fan H, Liu Z, Zheng X, Morrisey E, Zhang Y (2018) Elevated expression of miR302-367 in endothelial cells inhibits developmental angiogenesis via CDC42/CCND1 mediated signaling pathways. Theranostics 8(6):1511–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popov SV, Maslov LN, Naryzhnaya NV, Mukhomezyanov AV, Krylatov AV, Tsibulnikov SY, Ryabov VV, Cohen MV, Downey JM (2021) The role of pyroptosis in ischemic and reperfusion Injury of the Heart. J Cardiovasc Pharmacol Ther 26(6):562–574

    Article  CAS  PubMed  Google Scholar 

  • Purcell NH, Wilkins BJ, Y ork A, Saba-El-Leil MK, Meloche S, Robbins J, Molkentin JD, (2007) Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc Natl Acad Sci USA 104(35):14074–14079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rane CK, Minden A (2019) P21 activated kinase signaling in cancer. Semin Cancer Biol 54:40–49

    Article  CAS  PubMed  Google Scholar 

  • Raut SK, Kumar A, Singh GB, Nahar U, Sharma V, Mittal A, Sharma R, Khullar M (2015) miR-30c mediates upregulation of Cdc42 and Pak1 in diabetic cardiomyopathy. Cardiovasc Ther 33(3):89–97

    Article  CAS  PubMed  Google Scholar 

  • Reciprocal Regulation of Rac1 and PAK-1 by HIF-1a: A Positive-Feedback Loop Promoting Pulmonary Vascular Remodeling

  • Roepstorff K, Rasmussen I, Sawada M, Cudre-Maroux C, Salmon P, Bokoch G, van Deurs B, Vilhardt F (2008) Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis. J Biol Chem 283(12):7983–7993

    Article  CAS  PubMed  Google Scholar 

  • Rudrabhatla RS, Selvaraj SK, Prasadarao NV (2006) Role of Rac1 in Escherichia coli K1 invasion of human brain microvascular endothelial cells. Microbes Infect 8(2):460–469

    Article  CAS  PubMed  Google Scholar 

  • Savi M, Bocchi L, Mena P, Dall’Asta M, Crozier A, Brighenti F, Stilli D, Del Rio D (2017) In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 16(1):80

    Article  PubMed  PubMed Central  Google Scholar 

  • Savi M, Bocchi L, Bresciani L, Falco A, Quaini F, Mena P, Brighenti F, Crozier A, Stilli D, Del Rio D (2018) Trimethylamine-N-oxide (TMAO)-induced impairment of cardiomyocyte function and the protective role of urolithin B-glucuronide. Molecules 23(3):549

    Article  PubMed Central  Google Scholar 

  • Schürmann A, Mooney AF, Sanders LC, Sells MA, Wang HG, Reed JC, Bokoch GM (2000) p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol 20(2):453–461

    Article  PubMed  PubMed Central  Google Scholar 

  • Semenova G, Chernoff J (2017) Targeting PAK1. Biochem Soc Trans 45(1):79–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo HH, Lee SY, Lee CY, Kim R, Kim P, Oh S, Lee H, Lee MY, Kim J, Kim LK, Hwang KC, Chang W (2017) Exogenous miRNA-146a enhances the therapeutic efficacy of human mesenchymal stem cells by increasing vascular endothelial growth factor secretion in the ischemia/reperfusion-injured heart. J Vasc Res 54(2):100–108

    Article  CAS  PubMed  Google Scholar 

  • Shalom-Barak T, Knaus UG (2002) A p21-activated kinase-controlled metabolic switch up-regulates phagocyte NADPH oxidase. J Biol Chem 277(43):40659–40665

    Article  CAS  PubMed  Google Scholar 

  • Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C (2015) NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 5(6):262

    Google Scholar 

  • Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42(4):245–254

    Article  CAS  PubMed  Google Scholar 

  • Shiojima I, Walsh K (2006) Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 20:3347–3365

    Article  CAS  PubMed  Google Scholar 

  • Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J (2016) Aging and autophagy in the Heart. Circ Res 118(10):1563–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Chandrashekharappa S, Bodduluri SR, Baby BV, Hegde B, Kotla NG, Hiwale AA, Saiyed T, Patel P, Vijay-Kumar M, Langille MGI, Douglas GM, Cheng X, Rouchka EC, Waigel SJ, Dryden GW, Alatassi H, Zhang HG, Haribabu B, Vemula PK, Jala VR (2019) Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun 10(1):89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S (2019) Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 1(307):41–48

    Article  Google Scholar 

  • Sun H, Kamanova J, Lara-Tejero M, Galán JE (2018) Salmonella stimulates pro-inflammatory signalling through p21-activated kinases bypassing innate immune receptors. Nat Microbiol 3(10):1122–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taglieri DM, Monasky MM, Knezevic I et al (2011) Ablation of p21-activated kinase-1 in mice promotes isoproterenol-induced cardiac hypertrophy in association with activation of Erk1/2 and inhibition of protein phosphatase 2A. J Mol Cell Cardiol 51(6):988–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taglieri DM, Ushio-Fukai M, Monasky MM (2014) P21-activated kinase in inflammatory and cardiovascular disease. Cell Signal 26(9):2060–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas A, Giesler T, White E (2000) p53 mediates bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway. Oncogene 19(46):5259–5269

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Autieri MV (2007) Cytokine expression and AIF-1-mediated activation of Rac2 in vascular smooth muscle cells: a role for Rac2 in VSMC activation. Am J Physiol Cell Physiol 292(2):8419

    Article  Google Scholar 

  • Tong Z, Jiang B, Wu Y, Liu Y, Li Y, Gao M, Jiang Y, Lv Q, Xiao X (2015) MiR-21 protected cardiomyocytes against doxorubicin-induced apoptosis by targeting BTG2. Int J Mol Sci 16(7):14511–14525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troseid M, Ueland T, Hov JR, Svardal A, Gregersen I, Dahl CP, Aakhus S, Gude E, Bjorndal B, Halvorsen B et al (2015) Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med 277:717–726

    Article  CAS  PubMed  Google Scholar 

  • Tsai YR, Huang LJ, Lin HY, Hung YJ, Lee MR, Kuo SC, Hsu MF, Wang JP (2013) Inhibition of formyl peptide-stimulated superoxide anion generation by Fal-002-2 occurs mainly through the blockade of the p21-activated kinase and protein kinase C signaling pathways in ratneutrophils. Eur J Pharmacol 701(1–3):114–123

    Article  CAS  PubMed  Google Scholar 

  • Tu S, Cerione RA (2001) Cdc42 is a substrate for caspases and influences Fas-induced apoptosis. J Biol Chem 276(22):19656–19663

    Article  CAS  PubMed  Google Scholar 

  • Walsh K, McKinney MS, Love C, Liu Q, Fan A, Patel A, Smith J, Beaven A, Jima DD, Dave SS (2013) PAK1 mediates resistance to PI3K inhibition in lymphomas. Clin Cancer Res 19(5):1106–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Jia G, Li Y, Liu J, Luo J, Zhang J, Xu G, Chen G (2017) Clinicopathological signature of p21-activated kinase 1 in prostate cancer and its regulation of proliferation and autophagy via the mTOR signaling pathway. Oncotarget 8(14):22563–22580

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang S, Lei M, Boyett M, Tsui H, Liu W, Wang X (2018) The p21-activated kinase 1 (Pak1) signalling pathway in cardiac disease: from mechanistic study to therapeutic exploration. Br J Pharmacol 175(8):1362–1374

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Wu J, Zeng Y, Chen K, Wang C, Yang S, Sun N, Chen H, Duan K, Zeng G (2020) Pyroptosis: A pro-inflammatory type of cell death in cardiovascular disease. Clin Chim Acta 510:62–72

    Article  CAS  PubMed  Google Scholar 

  • Weber DS, Taniyama Y, Rocic P, Seshiah PN, Dechert MA, Gerthoffer WT, Griendling KK (2004) Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of platelet-derived growth factor-induced smooth muscle cell migration. Circ Res 94(9):1219–1226

    Article  CAS  PubMed  Google Scholar 

  • Wu RF, Gu Y, Xu YC, Nwariaku FE, Terada LS (2003) Vascular endothelial growth factor causes translocation of p47phox to membrane ruffles through WAVE1. J Biol Chem 278(38):36830–36840

    Article  CAS  PubMed  Google Scholar 

  • Wu XM, Ji KQ, Wang HY, Zhao Y, Jia J, Gao XP, Zang B (2019) microRNA-542-5p protects against acute lung injury in mice with severe acute pancreatitis by suppressing the mitogen-activated protein kinase signaling pathway through the negative regulation of P21-activated kinase 1. J Cell Biochem 120(1):290–304

    Article  CAS  PubMed  Google Scholar 

  • Xu HG, Zhai YX, Chen J, Lu Y, Wang JW, Quan CS, Zhao RX, Xiao X, He Q, Werle KD, Kim HG, Lopez R, Cui R, Liang J, Li YL, Xu ZX (2015) LKB1 reduces ROS-mediated cell damage via activation of p38. Oncogene 34(29):3848–3859

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Lai Y, Hua ZC (2019) Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep. https://doi.org/10.1042/BSR20180992

  • Yang S, Lian G (2020) ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem 467(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  • Yao D, Li C, Rajoka MSR, He Z, Huang J, Wang J, Zhang J (2020) P21-Activated Kinase 1: Emerging biological functions and potential therapeutic targets in Cancer. Theranostics 10(21):9741–9766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao D, Pan D, Zhen Y, Huang J, Wang J, Zhang J, He Z (2020) Ferulin C triggers potent PAK1 and p21-mediated anti-tumor effects in breast cancer by inhibiting Tubulin polymerization in vitro and in vivo. Pharmacol Res 152:104605

    Article  CAS  PubMed  Google Scholar 

  • Ye DZ, Jin S, Zhuo Y, Field J (2011) p21-Activated kinase 1 (Pak1) phosphorylates BAD directly at serine 111 in vitro and indirectly through Raf-1 at serine 112. PLoS ONE 6(11):e27637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon KS, Lee JM, Kim YH, Suh SK, Cha HJ (2020) Cardiotoxic effects of [3-[2-(diethylamino)ethyl]-1H-indol-4-yl] acetate and 3-[2-[ethyl(methyl)amino]ethyl]-1H-indol-4-ol. Toxicol Lett 1(319):40–48

    Article  Google Scholar 

  • Zhang B, Zhang Y, Shacter E (2003) Caspase 3-mediated inactivation of rac GTPases promotes drug-induced apoptosis in human lymphoma cells. Mol Cell Biol 23(16):5716–5725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Lu X, Arnold P, Liu Y, Baliga R, Huang H, Bauer JA, Liu Y, Feng Q (2012) Mitogen-activated protein kinase phosphatase-1 inhibits myocardial TNF-α expression and improves cardiac function during endotoxemia. Cardiovasc Res 93(3):471–479

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Mao H, Chen JY, Wen S, Li D, Ye M, Lv Z (2013) Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway. Biochem Biophys Res Commun 431(3):404–408

    Article  CAS  PubMed  Google Scholar 

  • Zhang DX, Ma DY, Yao ZQ et al (2016) ERK1/2/p53 and NF-κB dependent-PUMA activation involves in doxorubicin-induced cardiomyocyte apoptosis. Eur Rev Med Pharmacol Sci 20(11):2435–2442

    PubMed  Google Scholar 

  • Zhang Xuemei Xu, Xin TJ (2016) The role of MiR-221/222 in atherosclerosis-related vascular remodeling [J]. Chin J Hypertens 24(10):5

    Google Scholar 

  • Zhaolin Z, Guohua L, Shiyuan W, Zuo W (2019) Role of pyroptosis in cardiovascular disease. Cell Prolif 52(2):e12563

    Article  PubMed  Google Scholar 

  • Zheng Y, He JQ (2022) Pathogenic mechanisms of trimethylamine N-oxide-induced atherosclerosis and cardiomyopathy. Curr Vasc Pharmacol 20(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Dilly K, Dos Santos CJ, Li M, Gu Y, Ursitti JA, Chen J, Ross J Jr, Chien KR, Lederer JW, Wang Y (2004) Sarcoplasmic reticulum calcium defect in Ras-induced hypertrophic cardiomyopathy heart. Am J Physiol Heart Circ Physiol 286(1):H424–H433

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Cheng Y, Zhu P, Nasser MI, Zhang X, Zhao M (2020) Implication of gut microbiota in cardiovascular diseases. Oxid Med Cell Longev 26(2020):5394096

    Google Scholar 

  • Zhu M, Xu Y, Zhang W, Gu T, Wang D (2019) Inhibition of PAK1 alleviates cerulein-induced acute pancreatitis via p38 and NF-κB pathways. Biosci Rep. https://doi.org/10.1042/BSR20182221

  • Zhu P, Bu H, Tan S, Liu J, Yuan B, Dong G, Wang M, Jiang Y, Zhu H, Li H, Li Z, Jiang J, Wu M, Li R (2020) A Novel cochlioquinone derivative, CoB1, regulates autophagy in pseudomonas aeruginosa infection through the PAK1/Akt1/mTOR signaling pathway. J Immunol 205(5):1293–1305

    Article  CAS  PubMed  Google Scholar 

  • Zindel J, Kubes P (2020) DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annu Rev Pathol 24(15):493–518

    Article  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Li WQ, Li Q, Li XQ, Zhang JT, Liu GQ, Chen J, Qiu XX, Tian FJ, Wang ZZ, Zhu N, Qin YW, Shen B, Liu TX, Jing Q (2011) Two functional microRNA-126s repress a novel target gene p21-activated kinase 1 to regulate vascular integrity in zebrafish. Circ Res 108(2):201–209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michelle Kahmeyer-Gabbe, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.cn) for editing the English text of a draft of this manuscript.

Funding

This research was funded by grants from National Undergraduate Innovation and Entrepreneurship Training Program (202110632016), the fund (KeyME-KeyME-2020–004) of Key Laboratory of medical electrophysiology, Luzhou Municipal People’s Government—Southwest Medical University Science and Technology Strategic Cooperation (2021LZXNYD-J33) and Gulin County People's Hospital—Affiliated Hospital of Southwest Medical University Science and Technology strategic Cooperation (2022\GLXNYDFY13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Liu, Y., Feng, J. et al. p21-activated kinase 1 (PAK1) as a therapeutic target for cardiotoxicity. Arch Toxicol 96, 3143–3162 (2022). https://doi.org/10.1007/s00204-022-03384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-022-03384-1

Keywords

Navigation