Skip to main content
Log in

Chicken heterophils extracellular traps act as early effectors against cyclopiazonic acid dependent upon NADPH oxidase, ROS and glycolysis

  • Biologics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cyclopiazonic acid (CPA) is a secondary metabolite produced by Aspergillus and Penicillium, which is present in contaminated crops and food, causing severe toxicity to humans and animals. Heterophil extracellular traps (HETs) are a novel host innate immune mechanism of chicken heterophils against pathogen infection. However, whether CPA can cause immunotoxicity of heterophils on HETs release remains unclear. Here, we attempt to detect the effects of CPA on HETs release, and further investigate the molecular mechanisms underlying these processes. We exposed heterophils to 2.5, 5, 10 μM CPA for 90 min. The results showed that CPA induced the release of HETs in heterophils, consisting of DNA-modified citrullinated histone 3 and elastase. The quantitative analysis of HETs content was positively correlated with CPA concentration. CPA also promoted reactive oxygen species production and phosphorylation of ERK1/2 and p38. In addition, CPA-triggered HETs formation was reduced by NADPH oxidase, ERK1/2, and p38 signaling pathway and glycolysis inhibitors, indicating that CPA-induced HETs were related to the production of ROS dependent on NADPH oxidase, ERK1/2, and p38 signaling pathways, as well as glycolysis. Our study describes the underlying mechanism of CPA-induced HETs release, which may provide a further understanding of the immunotoxicology of CPA poisoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akkaya B, Roesler AS, Miozzo P, Theall BP, Al Souz J, Smelkinson MG, Kabat J, Traba J, Sack MN, Brzostowski JA, Pena M, Dorward DW, Pierce SK, Akkaya M (2018) Increased mitochondrial biogenesis and reactive oxygen species production accompany prolonged CD4(+) T cell activation. J Immunol (baltimore, Md 1950) 201(11):3294–3306

    Article  CAS  Google Scholar 

  • Anandhan A, Lei S, Levytskyy R, Pappa A, Panayiotidis MI, Cerny RL, Khalimonchuk O, Powers R, Franco R (2017) Glucose metabolism and AMPK signaling regulate dopaminergic cell death induced by gene (α-Synuclein)-environment (paraquat) interactions. Mol Neurobiol 54(5):3825–3842

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi G, Ryan TA (2017) Glucose metabolism in nerve terminals. Curr Opin Neurobiol 45:156–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astoreca A, Vaamonde G, Dalcero A, Marin S, Ramos A (2014) Abiotic factors and their interactions influence on the co-production of aflatoxin B(1) and cyclopiazonic acid by Aspergillus flavus isolated from corn. Food Microbiol 38:276–283

    Article  CAS  PubMed  Google Scholar 

  • Aulik NA, Hellenbrand KM, Klos H, Czuprynski CJ (2010) Mannheimia haemolytica and its leukotoxin cause neutrophil extracellular trap formation by bovine neutrophils. Infect Immun 78(11):4454–4466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borregaard N, Herlin T (1982) Energy metabolism of human neutrophils during phagocytosis. J Clin Investig 70(3):550–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branitzki-Heinemann K, Möllerherm H, Völlger L, Husein DM, de Buhr N, Blodkamp S, Reuner F, Brogden G, Naim HY, von Köckritz-Blickwede M (2016) Formation of neutrophil extracellular traps under low oxygen level. Front Immunol 7:518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao Y, Zhang X, Wang L, Yang Q, Ma Q, Xu J, Wang J, Kovacs L, Ayon RJ, Liu Z, Zhang M, Zhou Y, Zeng X, Xu Y, Wang Y, Fulton DJ, Weintraub NL, Lucas R, Dong Z, Yuan JX, Sullivan JC, Meadows L, Barman SA, Wu C, Quan J, Hong M, Su Y, Huo Y (2019) PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension. Proc Natl Acad Sci USA 116(27):13394–13403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow LWC, Wong KL, Shiao LR, Wu KC, Leung YM (2020) Polyamine stimulation perturbs intracellular Ca2+ homeostasis and decreases viability of breast cancer BT474 cells. Z Fur Naturforschung C. https://doi.org/10.1515/znc-2019-0119

    Article  Google Scholar 

  • Chuammitri P, Ostojić J, Andreasen CB, Redmond SB, Lamont SJ, Palić D (2009) Chicken heterophil extracellular traps (HETs): novel defense mechanism of chicken heterophils. Vet Immunol Immunopathol 129(1–2):126–131

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS, Jackson SA (1988) Glycolysis in permeabilized L-929 cells. Biochem J 255(1):335–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen G, Raupachova J, Wimmer T, Deicher R, Hörl WH (2008) The uraemic retention solute para-hydroxy-hippuric acid attenuates apoptosis of polymorphonuclear leukocytes from healthy subjects but not from haemodialysis patients. Nephrol Dial Transpl 23(8):2512–2519

    Article  CAS  Google Scholar 

  • Cole RJ (1986) Etiology of Turkey “X” disease in retrospect: a case for the involvement of cyclopiazonic acid. Mycotoxin Res 2(1):3–7

    Article  CAS  PubMed  Google Scholar 

  • Curtis NJ, Mooney L, Hopcroft L, Michopoulos F, Whalley N, Zhong H, Murray C, Logie A, Revill M, Byth KF, Benjamin AD, Firth MA, Green S, Smith PD, Critchlow SE (2017) Pre-clinical pharmacology of AZD3965, a selective inhibitor of MCT1: DLBCL, NHL and Burkitt’s lymphoma anti-tumor activity. Oncotarget 8(41):69219–69236

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalva-Aydemir S, Bajpai R, Martinez M, Adekola KU, Kandela I, Wei C, Singhal S, Koblinski JE, Raje NS, Rosen ST, Shanmugam M (2015) Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin. Clin Cancer Res 21(5):1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Demaurex N, Lew DP, Krause KH (1992) Cyclopiazonic acid depletes intracellular Ca2+ stores and activates an influx pathway for divalent cations in HL-60 cells. J Biol Chem 267(4):2318–2324

    Article  CAS  PubMed  Google Scholar 

  • Dorner JW, Cole RJ, Lomax LG, Gosser HS, Diener UL (1983) Cyclopiazonic acid production by Aspergillus flavus and its effects on broiler chickens. Appl Environ Microbiol 46(3):698–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwyer MR, Kubena LF, Harvey RB, Mayura K, Sarr AB, Buckley S, Bailey RH, Phillips TD (1997) Effects of inorganic adsorbents and cyclopiazonic acid in broiler chickens. Poult Sci 76(8):1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Genovese KJ, He H, Swaggerty CL, Kogut MH (2013) The avian heterophil. Dev Comp Immunol 41(3):334–340

    Article  CAS  PubMed  Google Scholar 

  • Gibson A, McFadzean I, Wallace P, Wayman CP (1998) Capacitative Ca2+ entry and the regulation of smooth muscle tone. Trends Pharmacol Sci 19(7):266–269

    Article  CAS  PubMed  Google Scholar 

  • Han Z, Zhang Y, Wang C, Liu X, Jiang A, Liu Z, Wang J, Yang Z, Wei Z (2019) Ochratoxin A-triggered chicken heterophil extracellular traps release through reactive oxygen species production dependent on activation of NADPH oxidase, ERK, and p38 MAPK signaling pathways. J Agric Food Chem 67(40):11230–11235

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Busman M, Maragos CM (2019) Immunoassay utilizing imaging surface plasmon resonance for the detection of cyclopiazonic acid (CPA) in maize and cheese. Anal Bioanal Chem 411(16):3543–3552

    Article  CAS  PubMed  Google Scholar 

  • Houghton MJ, Kerimi A, Tumova S, Boyle JP, Williamson G (2018) Quercetin preserves redox status and stimulates mitochondrial function in metabolically-stressed HepG2 cells. Free Radic Biol Med 129:296–309

    Article  CAS  PubMed  Google Scholar 

  • Jelinek CF, Pohland AE, Wood GE (1989) Worldwide occurrence of mycotoxins in foods and feeds–an update. J Assoc off Anal Chem 72(2):223–230

    CAS  PubMed  Google Scholar 

  • Jiang L, Wang J, Liu Z, Jiang A, Li S, Wu D, Zhang Y, Zhu X, Zhou E, Wei Z, Yang Z (2020) Sodium butyrate alleviates lipopolysaccharide-induced inflammatory responses by down-regulation of NF-κB, NLRP3 signaling pathway, and activating histone acetylation in bovine macrophages. Frontiers in Veterinary Science 7:579674

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang A, Zhang Y, Wu D, Li S, Liu Z, Yang Z, Wei Z (2021) Sodium molybdate induces heterophil extracellular traps formation in chicken. Ecotoxicol Environ Saf 210:111886

    Article  CAS  PubMed  Google Scholar 

  • Kamalavenkatesh P, Vairamuthu S, Balachandran C, Manohar BM, Raj GD (2005) Immunopathological effect of the mycotoxins cyclopiazonic acid and T-2 toxin on broiler chicken. Mycopathologia 159(2):273–279

    Article  CAS  PubMed  Google Scholar 

  • Levay M, Krobert KA, Wittig K, Voigt N, Bermudez M, Wolber G, Dobrev D, Levy FO, Wieland T (2013) NSC23766, a widely used inhibitor of Rac1 activation, additionally acts as a competitive antagonist at muscarinic acetylcholine receptors. J Pharmacol Exp Ther 347(1):69–79

    Article  CAS  PubMed  Google Scholar 

  • Liew PX, Kubes P (2019) The neutrophil’s role during health and disease. Physiol Rev 99(2):1223–1248

    Article  CAS  PubMed  Google Scholar 

  • Lucas M, Díaz P (2001) Thapsigargin-induced calcium entry and apoptotic death of neutrophils are blocked by activation of protein kinase C. Pharmacology 63(3):191–196

    Article  CAS  PubMed  Google Scholar 

  • Malekinejad H, Akbari P, Allymehr M, Hobbenaghi R, Rezaie A (2011) Cyclopiazonic acid augments the hepatic and renal oxidative stress in broiler chicks. Hum Exp Toxicol 30(8):910–919

    Article  CAS  PubMed  Google Scholar 

  • Mohanty T, Fisher J, Bakochi A, Neumann A, Cardoso JFP, Karlsson CAQ, Pavan C, Lundgaard I, Nilson B, Reinstrup P, Bonnevier J, Cederberg D, Malmström J, Bentzer P, Linder A (2019) Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat Commun 10(1):1667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molnar T, Barabas P, Birnbaumer L, Punzo C, Kefalov V, Krizaj D (2012) Store-operated channels regulate intracellular calcium in mammalian rods. J Physiol 590(15):3465–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuehring LP, Rowland GN, Harrison LR, Cole RJ, Dorner JW (1985) Cyclopiazonic acid mycotoxicosis in the dog. Am J Vet Res 46(8):1670–1676

    CAS  PubMed  Google Scholar 

  • Otsuki S, Morshed SR, Chowdhury SA, Takayama F, Satoh T, Hashimoto K, Sugiyama K, Amano O, Yasui T, Yokote Y, Akahane K, Sakagami H (2005) Possible link between glycolysis and apoptosis induced by sodium fluoride. J Dent Res 84(10):919–923

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Wang N, Xia P, Wang E, Guo Q, Ye Z (2018) Inhibition of Rac1 ameliorates neuronal oxidative stress damage via reducing Bcl-2/Rac1 complex formation in mitochondria through PI3K/Akt/mTOR pathway. Exp Neurol 300:149–166

    Article  CAS  PubMed  Google Scholar 

  • Pfliegler WP, Pocsi I, Gyori Z, Pusztahelyi T (2019) The aspergilli and their mycotoxins: metabolic interactions with plants and the soil biota. Front Microbiol 10:2921

    Article  PubMed  Google Scholar 

  • Pichla M, Sroka J, Pienkowska N, Piwowarczyk K, Madeja Z, Bartosz G, Sadowska-Bartosz I (2019) Metastatic prostate cancer cells are highly sensitive to 3-bromopyruvic acid. Life Sci 227:212–223

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MM, López-Villegas EO, Sánchez-García FJ (2015) Metabolic requirements for neutrophil extracellular traps formation. Immunology 145(2):213–224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith EE, Kubena LF, Braithwaite CE, Harvey RB, Phillips TD, Reine AH (1992) Toxicological evaluation of aflatoxin and cyclopiazonic acid in broiler chickens. Poult Sci 71(7):1136–1144

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Muraki K, Imaizumi Y, Watanabe M (1992) Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca(2+)-pump, reduces Ca(2+)-dependent K+ currents in guinea-pig smooth muscle cells. Br J Pharmacol 107(1):134–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theumer MG, Henneb Y, Khoury L, Snini SP, Tadrist S, Canlet C, Puel O, Oswald IP, Audebert M (2018) Genotoxicity of aflatoxins and their precursors in human cells. Toxicol Lett 287:100–107

    Article  CAS  PubMed  Google Scholar 

  • Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL (2020) Energy Metabolism Regulates Stem Cell Pluripotency. Front Cell Dev Biol 8:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zheng S, Zhang Q, Yang Z, Yin K, Xu S (2018) Atrazine hinders PMA-induced neutrophil extracellular traps in carp via the promotion of apoptosis and inhibition of ROS burst, autophagy and glycolysis. Environ Pollut (barking, Essex 1987) 243(Pt A):282–291

    Article  CAS  Google Scholar 

  • Wang C, Wei Z, Han Z, Wang J, Zhang X, Wang Y, Liu Q, Yang Z (2019a) Neutrophil extracellular traps promote cadmium chloride-induced lung injury in mice. Environ Pollut (barking, Essex 1987) 254(Pt A):113021

    Article  CAS  Google Scholar 

  • Wang JJ, Wei ZK, Han Z, Liu ZY, Zhu XY, Li XW, Wang K, Yang ZT (2019b) zearalenone induces estrogen-receptor-independent neutrophil extracellular trap release in vitro. J Agric Food Chem 67(16):4588–4594

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Liu X, Han Z, Zhang X, Wang J, Wang K, Yang Z, Wei Z (2019c) Nanosilver induces the formation of neutrophil extracellular traps in mouse neutrophil granulocytes. Ecotoxicol Environ Saf 183:109508

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Zhang X, Wang J, Wang Y, Yang Z, Fu Y (2018) The formation of canine neutrophil extracellular traps induced by sodium arsenic in polymorphonuclear neutrophils. Chemosphere 196:297–302

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Wang J, Wang Y, Wang C, Liu X, Han Z, Fu Y, Yang Z (2019a) Effects of neutrophil extracellular traps on bovine mammary epithelial cells in vitro. Front Immunol 10:1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Zhao Y, Zhang N, Han Z, Liu X, Jiang A, Zhang Y, Wang C, Gong P, Li J, Zhang X, Yang Z (2019b) Eimeria tenella induces the release of chicken heterophil extracellular traps. Vet Parasitol 275:108931

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Wang Z, Liu X, Wang C, Han Z, Wu D, Zhang Y, Zhang X, Yang Z, Liu Q (2020) Toxoplasma gondii triggers neutrophil extracellular traps release in dogs. Front Cell Infect Microbiol 10:429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Li S, Li P, Jiang A, Liu Z, Zhang Y, Wang J, Yang Z, Wei Z (2021) Diacetoxyscirpenol-induced heterophil extracellular traps contribute to the immune toxicity of liver injury in chickens. Food Chem Toxicol 148:111926

    Article  CAS  PubMed  Google Scholar 

  • Zhao ML, Chi H, Sun L (2017) Neutrophil Extracellular traps of cynoglossus semilaevis: production characteristics and antibacterial effect. Front Immunol 8:290

    PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Niu W, Luo Y, Li H, Xie Y, Wang H, Liu Y, Fan S, Li Z, Xiong W, Li X, Ren C, Tan M, Li G, Zhou M (2019) p53/Lactate dehydrogenase A axis negatively regulates aerobic glycolysis and tumor progression in breast cancer expressing wild-type p53. Cancer Sci 110(3):939–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110524), and National Natural Science Foundation of China (No. 32002309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengkai Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Li, S., Wu, D. et al. Chicken heterophils extracellular traps act as early effectors against cyclopiazonic acid dependent upon NADPH oxidase, ROS and glycolysis. Arch Toxicol 96, 2113–2122 (2022). https://doi.org/10.1007/s00204-022-03277-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-022-03277-3

Keywords

Navigation