Skip to main content

Advertisement

Log in

Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

While environmental exposures are not the single cause of Parkinson’s disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na+-glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism/transport and the pentose phosphate pathway (6-aminonicotinamide). These results demonstrate that glucose metabolism and AMPK regulate dopaminergic cell death induced by gene (α-synuclein)-environment (PQ) interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Niccoli T, Partridge L (2012) Ageing as a risk factor for disease. Curr Biol 22(17):R741–52

    Article  CAS  PubMed  Google Scholar 

  2. Cannon JR, Greenamyre JT (2013) Gene-environment interactions in Parkinson’s disease: specific evidence in humans and mammalian models. Neurobiol Dis 57:38–46

    Article  CAS  PubMed  Google Scholar 

  3. Klein C, Westenberger A (2012) Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2(1):a008888

    Article  PubMed  PubMed Central  Google Scholar 

  4. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–7

    Article  CAS  PubMed  Google Scholar 

  5. Stefanis L (2012) Alpha-synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009399

    Article  PubMed  PubMed Central  Google Scholar 

  6. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J et al (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    Article  CAS  PubMed  Google Scholar 

  7. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–9

    Article  CAS  PubMed  Google Scholar 

  8. Ross OA, Braithwaite AT, Skipper LM, Kachergus J, Hulihan MM, Middleton FA et al (2008) Genomic investigation of alpha-synuclein multiplication and parkinsonism. Ann Neurol 63(6):743–50

    Article  CAS  PubMed  Google Scholar 

  9. Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M et al (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119(6):866–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rodriguez-Rocha H, Garcia-Garcia A, Pickett C, Li S, Jones J, Chen H et al (2013) Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: distinct roles of superoxide anion and superoxide dismutases. Free Radic Biol Med 61C:370–383

    Article  Google Scholar 

  11. Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI (2010) Molecular mechanisms of pesticide-induced neurotoxicity: relevance to Parkinson’s disease. Chem Biol Interact 188(2):289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ryan SD, Dolatabadi N, Chan SF, Zhang X, Akhtar MW, Parker J et al (2013) Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. Cell 155(6):1351–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Norris EH, Uryu K, Leight S, Giasson BI, Trojanowski JQ, Lee VM (2007) Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model. Am J Pathol 170(2):658–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peng J, Oo ML, Andersen JK (2010) Synergistic effects of environmental risk factors and gene mutations in Parkinson’s disease accelerate age-related neurodegeneration. J Neurochem 115(6):1363–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Perier C, Vila M (2012) Mitochondrial biology and Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009332

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gibson GE, Kingsbury AE, Xu H, Lindsay JG, Daniel S, Foster OJ et al (2003) Deficits in a tricarboxylic acid cycle enzyme in brains from patients with Parkinson’s disease. Neurochem Int 43(2):129–35

    Article  CAS  PubMed  Google Scholar 

  17. Yin F, Boveris A, Cadenas E (2014) Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal 20(2):353–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Palombo E, Porrino LJ, Bankiewicz KS, Crane AM, Sokoloff L, Kopin IJ (1990) Local cerebral glucose utilization in monkeys with hemiparkinsonism induced by intracarotid infusion of the neurotoxin MPTP. J Neurosci 10(3):860–9

    CAS  PubMed  Google Scholar 

  19. Eberling JL, Richardson BC, Reed BR, Wolfe N, Jagust WJ (1994) Cortical glucose metabolism in Parkinson’s disease without dementia. Neurobiol Aging 15(3):329–35

    Article  CAS  PubMed  Google Scholar 

  20. Henchcliffe C, Shungu DC, Mao X, Huang C, Nirenberg MJ, Jenkins BG et al (2008) Multinuclear magnetic resonance spectroscopy for in vivo assessment of mitochondrial dysfunction in Parkinson’s disease. Ann N Y Acad Sci 1147:206–20

    Article  CAS  PubMed  Google Scholar 

  21. Jiang P, Gan M, Ebrahim AS, Castanedes-Casey M, Dickson DW, Yen SH (2013) Adenosine monophosphate-activated protein kinase overactivation leads to accumulation of alpha-synuclein oligomers and decrease of neurites. Neurobiol Aging 34(5):1504–15

    Article  CAS  PubMed  Google Scholar 

  22. Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11(6):747–52

    Article  CAS  PubMed  Google Scholar 

  23. Dunn L, Allen GF, Mamais A, Ling H, Li A, Duberley KE et al (2014) Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol Aging 35(5):1111–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cardaci S, Filomeni G, Ciriolo MR (2012) Redox implications of AMPK-mediated signal transduction beyond energetic clues. J Cell Sci 125(Pt 9):2115–25

    Article  CAS  PubMed  Google Scholar 

  25. Ng CH, Guan MS, Koh C, Ouyang X, Yu F, Tan EK et al (2012) AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. J Neurosci 32(41):14311–7

    Article  CAS  PubMed  Google Scholar 

  26. Choi JS, Park C, Jeong JW (2010) AMP-activated protein kinase is activated in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun 391(1):147–51

    Article  CAS  PubMed  Google Scholar 

  27. Dulovic M, Jovanovic M, Xilouri M, Stefanis L, Harhaji-Trajkovic L, Kravic-Stevovic T et al (2014) The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiol Dis 63:1–11

    Article  CAS  PubMed  Google Scholar 

  28. Xu Y, Liu C, Chen S, Ye Y, Guo M, Ren Q et al (2014) Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson’s disease. Cell Signal 26(8):1680–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim TW, Cho HM, Choi SY, Suguira Y, Hayasaka T, Setou M et al (2013) (ADP-ribose) polymerase 1 and AMP-activated protein kinase mediate progressive dopaminergic neuronal degeneration in a mouse model of Parkinson’s disease. Cell Death Dis 4:e919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lei S, Zavala-Flores L, Garcia-Garcia A, Nandakumar R, Huang Y, Madayiputhiya N et al (2014) Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. ACS Chem Biol

  31. Prasad KN, Carvalho E, Kentroti S, Edwards-Prasad J, Freed C, Vernadakis A (1994) Establishment and characterization of immortalized clonal cell lines from fetal rat mesencephalic tissue. In Vitro Cell Dev Biol Anim 30A(9):596–603

    Article  CAS  PubMed  Google Scholar 

  32. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu F, Hindupur J, Nguyen JL, Ruf KJ, Zhu J, Schieler JL et al (2008) Methionine sulfoxide reductase A protects dopaminergic cells from Parkinson’s disease-related insults. Free Radic Biol Med 45(3):242–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang L, Li P, Fu S, Calay ES, Hotamisligil GS (2010) Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11(6):467–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, Spitz DR et al (2002) Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res 91(11):1038–45

    Article  CAS  PubMed  Google Scholar 

  36. Woods A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferre P et al (2000) Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol 20(18):6704–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barde I, Salmon P, Trono D (2010) Production and titration of lentiviral vectors. Curr Protoc Neurosci; Chapter 4: Unit 4 21

  38. Rodriguez-Rocha H, Garcia-Garcia A, Zavala-Flores L, Li S, Madayiputhiya N, Franco R (2012) Glutaredoxin 1 protects dopaminergic cells by increased protein glutathionylation in experimental Parkinson’s disease. Antioxid Redox Signal

  39. Garcia-Garcia A, Anandhan A, Burns M, Chen H, Zhou Y, Franco R (2013) Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP(+)-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicol Sci 136(1):166–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anandhan A, Rodriguez-Rocha H, Bohovych I, Griggs AM, Zavala-Flores L, Reyes-Reyes EM et al (2014) Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways. Neurobiol Dis

  41. Navarro-Yepes J, Anandhan A, Bradley E, Bohovych I, Yarabe B, de Jong A et al (2015) Inhibition of protein ubiquitination by paraquat and 1-methyl-4-phenylpyridinium impairs ubiquitin-dependent protein degradation pathways. Mol Neurobiol

  42. Teslaa T, Teitell MA (2014) Techniques to monitor glycolysis. Methods Enzymol 542:91–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chaika NV, Gebregiworgis T, Lewallen ME, Purohit V, Radhakrishnan P, Liu X et al (2012) MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc Natl Acad Sci U S A 109(34):13787–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Worley B, Powers R (2014) MVAPACK: a complete data handling package for NMR metabolomics. ACS Chem Biol 9(5):1138–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marshall DD, Lei S, Worley B, Huang Y, Garcia-Garcia A, Franco R et al (2015) Combining DI-ESI-MS and NMR datasets for metabolic profiling. Metabolomics 11(2):391–402

    Article  CAS  PubMed  Google Scholar 

  47. Worley B, Halouska S, Powers R (2013) Utilities for quantifying separation in PCA/PLS-DA scores plots. Anal Biochem 433(2):102–4

    Article  CAS  PubMed  Google Scholar 

  48. Werth MT, Halouska S, Shortridge MD, Zhang B, Powers R (2010) Analysis of metabolomic PCA data using tree diagrams. Anal Biochem 399(1):58–63

    Article  CAS  PubMed  Google Scholar 

  49. Eriksson L, Trygg J, Wold S (2008) CV-ANOVA for significance testing of PLS and OPLS (R) models. J Chemometr 22(11–12):594–600

    Article  CAS  Google Scholar 

  50. Shao J (1993) Linear-model selection by cross-validation. J Am Stat Assoc 88(422):486–494

    Article  Google Scholar 

  51. Marroquin LD, Hynes J, Dykens JA, Jamieson JD, Will Y (2007) Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol Sci 97(2):539–47

    Article  CAS  PubMed  Google Scholar 

  52. Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254(8):2669–76

    CAS  PubMed  Google Scholar 

  53. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125(1):25–32

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chiang GG, Abraham RT (2005) Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem 280(27):25485–90

    Article  CAS  PubMed  Google Scholar 

  56. Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J et al (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15(7):741–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–61

    Article  CAS  PubMed  Google Scholar 

  58. Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M (2000) Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem 275(36):28246–53

    CAS  PubMed  Google Scholar 

  59. Cantu D, Fulton RE, Drechsel DA, Patel M (2011) Mitochondrial aconitase knockdown attenuates paraquat-induced dopaminergic cell death via decreased cellular metabolism and release of iron and H(2)O(2). J Neurochem 118(1):79–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Viollet B, Horman S, Leclerc J, Lantier L, Foretz M, Billaud M et al (2010) AMPK inhibition in health and disease. Crit Rev Biochem Mol Biol 45(4):276–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J et al (2006) 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol 26(14):5336–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. O’Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jorgensen SB, Schertzer JD et al (2011) AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A 108(38):16092–7

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E (2010) Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J Biol Chem 285(43):33154–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Auciello FR, Ross FA, Ikematsu N, Hardie DG (2014) Oxidative stress activates AMPK in cultured cells primarily by increasing cellular AMP and/or ADP. FEBS Lett 588(18):3361–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Day BJ, Patel M, Calavetta L, Chang LY, Stamler JS (1999) A mechanism of paraquat toxicity involving nitric oxide synthase. Proc Natl Acad Sci U S A 96(22):12760–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ortiz-Ortiz MA, Moran JM, Gonzalez-Polo RA, Niso-Santano M, Soler G, Bravo-San Pedro JM et al (2009) Nitric oxide-mediated toxicity in paraquat-exposed SH-SY5Y cells: a protective role of 7-nitroindazole. Neurotox Res 16(2):160–73

    Article  CAS  PubMed  Google Scholar 

  67. Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240(4857):1326–8

    Article  CAS  PubMed  Google Scholar 

  68. Monyer H, Choi DW (1990) Glucose deprivation neuronal injury in vitro is modified by withdrawal of extracellular glutamine. J Cereb Blood Flow Metab 10(3):337–42

    Article  CAS  PubMed  Google Scholar 

  69. Bruck D, Wenning GK, Stefanova N, Fellner L (2016) Glia and alpha-synuclein in neurodegeneration: a complex interaction. Neurobiol Dis 85:262–74

    Article  PubMed  Google Scholar 

  70. Wills J, Credle J, Oaks AW, Duka V, Lee JH, Jones J et al (2012) Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways. PLoS One 7(1), e30745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ramirez-Peinado S, Leon-Annicchiarico CL, Galindo-Moreno J, Iurlaro R, Caro-Maldonado A, Prehn JH et al (2013) Glucose-starved cells do not engage in prosurvival autophagy. J Biol Chem 288(42):30387–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dodson M, Liang Q, Johnson MS, Redmann M, Fineberg N, Darley-Usmar VM et al (2013) Inhibition of glycolysis attenuates 4-hydroxynonenal-dependent autophagy and exacerbates apoptosis in differentiated SH-SY5Y neuroblastoma cells. Autophagy 9(12):1996–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shah K, Desilva S, Abbruscato T (2012) The role of glucose transporters in brain disease: diabetes and Alzheimer’s disease. Int J Mol Sci 13(10):12629–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chaudhuri AD, Kabaria S, Choi DC, Mouradian MM, Junn E (2015) MicroRNA-7 promotes glycolysis to protect against 1-methyl-4-phenylpyridinium-induced cell death. J Biol Chem 290(19):12425–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sankar R, Thamotharan S, Shin D, Moley KH, Devaskar SU (2002) Insulin-responsive glucose transporters-GLUT8 and GLUT4 are expressed in the developing mammalian brain. Brain Res Mol Brain Res 107(2):157–65

    Article  CAS  PubMed  Google Scholar 

  76. Chen J, Williams S, Ho S, Loraine H, Hagan D, Whaley JM et al (2010) Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diab Ther 1(2):57–92

    Article  CAS  Google Scholar 

  77. El Messari S, Ait-Ikhlef A, Ambroise DH, Penicaud L, Arluison M (2002) Expression of insulin-responsive glucose transporter GLUT4 mRNA in the rat brain and spinal cord: an in situ hybridization study. J Chem Neuroanat 24(4):225–42

    Article  PubMed  Google Scholar 

  78. Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K et al (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33(5):627–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu SB, Wei YH (2012) AMPK-mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: implication of the cell survival in mitochondrial diseases. Biochim Biophys Acta 1822(2):233–47

    Article  CAS  PubMed  Google Scholar 

  80. Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW (1999) 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48(8):1667–71

    Article  CAS  PubMed  Google Scholar 

  81. Jeon SM, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485(7400):661–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z et al (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17(1):113–24

    Article  CAS  PubMed  Google Scholar 

  83. Reznick RM, Shulman GI (2006) The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol 574(Pt 1):33–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nieminen AI, Eskelinen VM, Haikala HM, Tervonen TA, Yan Y, Partanen JI et al (2013) Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis. Proc Natl Acad Sci U S A 110(20):E1839–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hardie DG (2014) AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr 34:31–55

    Article  CAS  PubMed  Google Scholar 

  86. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, Depinho RA et al (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101(10):3329–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shao D, Oka S, Liu T, Zhai P, Ago T, Sciarretta S et al (2014) A redox-dependent mechanism for regulation of AMPK activation by Thioredoxin1 during energy starvation. Cell Metab 19(2):232–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT et al (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468(7324):696–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pissadaki EK, Bolam JP (2013) The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease. Front Comput Neurosci 7:13

    Article  PubMed  PubMed Central  Google Scholar 

  90. Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R et al (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29(2):444–53

    Article  CAS  PubMed  Google Scholar 

  91. Uversky VN, Li J, Fink AL (2001) Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett 500(3):105–8

    Article  CAS  PubMed  Google Scholar 

  92. Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 277(3):1641–4

    Article  CAS  PubMed  Google Scholar 

  93. Subramaniam SR, Vergnes L, Franich NR, Reue K, Chesselet MF (2014) Region specific mitochondrial impairment in mice with widespread overexpression of alpha-synuclein. Neurobiol Dis 70:204–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A 97(2):571–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dettmer U, Newman AJ, Soldner F, Luth ES, Kim NC, von Saucken VE et al (2015) Parkinson-causing alpha-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat Commun 6:7314

    Article  PubMed  PubMed Central  Google Scholar 

  97. Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA et al (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26(1):41–50

    Article  CAS  PubMed  Google Scholar 

  98. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A et al (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287(5456):1265–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health Grants P20RR17675 Centers of Biomedical Research Excellence (COBRE), R01GM108975 (O.K.), the Scientist Development Grant of the American Heart Association (12SDG12090015, R.F.), and the Office of Research of the University of Nebraska-Lincoln. Part of this research was performed in facilities renovated with support from the NIH under Grant RR015468-01. We would like to thank the Flow Cytometry Core Facility at the Nebraska Center for Virology for the access to flow cytometry instrumentation (NIGMS grant number P30 GM103509).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Powers or Rodrigo Franco.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandhan, A., Lei, S., Levytskyy, R. et al. Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions. Mol Neurobiol 54, 3825–3842 (2017). https://doi.org/10.1007/s12035-016-9906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9906-2

Keywords

Navigation