Skip to main content

Advertisement

Log in

Kupffer cells regulate liver recovery through induction of chemokine receptor CXCR2 on hepatocytes after acetaminophen overdose in mice

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Acetaminophen (APAP) is a widely used analgesic, but also a main cause of acute liver injury in the United States and many western countries. APAP hepatotoxicity is associated with a sterile inflammatory response as shown by the infiltration of neutrophils and monocytes. While the contribution of the immune cells to promote liver repair have been demonstrated, the direct interactions between macrophages or neutrophils with hepatocytes to help facilitate hepatocyte proliferation and tissue repair remain unclear. The purpose of this study was to investigate the relationship between resident macrophages (Kupffer cells) and hepatocytes with a focus on the chemokine receptor CXCR2. C57BL/6J mice were subjected to an APAP overdose (300 mg/kg) and the role of CXCR2 on hepatocytes was investigated using a selective antagonist, SB225002. In addition, clodronate liposomes were used to deplete Kupffer cells to assess changes in CXCR2 expression. Our data showed that CXCR2 was mainly expressed on hepatocytes and it was induced specifically in hepatocytes around the necrotic area 24 h after APAP treatment. Targeting this receptor using an inhibitor caused a delayed liver recovery. Depletion of Kupffer cells significantly prevented CXCR2 induction on hepatocytes. In vitro and in vivo experiments also demonstrated that Kupffer cells regulate CXCR2 expression and pro-regenerative gene expression in surviving hepatocytes through production of IL-10. Thus, Kupffer cells support the transition of hepatocytes around the area of necrosis to a proliferative state through CXCR2 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol 165:5269–5277

    Article  PubMed  CAS  Google Scholar 

  • Allen K, Jaeschke H, Copple BL (2011) Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am J Pathol 178:175–186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bajt ML, Farhood A, Jaeschke H (2001) Effects of CXC chemokines on neutrophil activation and sequestration in hepatic vasculature. Am J Physiol Gastrointest Liver Physiol 281:G1188–G1195

    Article  PubMed  CAS  Google Scholar 

  • Bajt ML, Knight TR, Lemasters JJ, Jaeschke H (2004) Acetaminophen-induced oxidant stress and cell injury in cultured mouse hepatocytes: protection by N-acetyl cysteine. Toxicol Sci 80:343–349

    Article  PubMed  CAS  Google Scholar 

  • Bajt ML, Cover C, Lemasters JJ, Jaeschke H (2006) Nuclear translocation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury. Toxicol Sci 94:217–225

    Article  PubMed  CAS  Google Scholar 

  • Ben-Moshe S, Shapira Y, Moor AE, Manco R, Veg T, Bahar Halpern K, Itzkovitz S (2019) Spatial sorting enables comprehensive characterization of liver zonation. Nat Metab 1:899–911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernal W, Wendon J (2013) Acute liver failure. N Engl J Med 369:2525–2534

    Article  PubMed  CAS  Google Scholar 

  • Bhushan B, Apte U (2019) Liver Regeneration after Acetaminophen Hepatotoxicity: Mechanisms and Therapeutic Opportunities. Am J Pathol 189:719–729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blieden M, Paramore LC, Shah D, Ben-Joseph R (2014) A perspective on the epidemiology of acetaminophen exposure and toxicity in the United States. Expert Rev Clin Pharmacol 7:341–348

    Article  PubMed  CAS  Google Scholar 

  • Bonkovsky HL, Barnhart HX, Foureau DM, Steuerwald N, Lee WM, Gu J, Fontana RJ, Hayashi PJ, Chalasani N, Navarro VM, Odin J, Stolz A, Watkins PB, Serrano J; US Drug-Induced Liver Injury Network and the Acute Liver Failure Study Group (2018) Cytokine profiles in acute liver injury-Results from the US Drug-Induced Liver Injury Network (DILIN) and the Acute Liver Failure Study Group. PLoS One 13:e0206389.

  • Bourdi M, Masubuchi Y, Reilly TP, Amouzadeh HR, Martin JL, George JW, Shah AG, Pohl LR (2002) Protection against acetaminophen-induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatology 35:289–298

    Article  PubMed  CAS  Google Scholar 

  • Calvente CJ, Tameda M, Johnson CD, Del Pilar H, Lin YC, Adronikou N, De Mollerat Du, Jeu X, Llorente C, Boyer J, Feldstein AE (2019) Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. J Clin Invest 129:4091–4109

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA, McCubrey JA (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17:590–603

    Article  PubMed  CAS  Google Scholar 

  • Chauhan A, Sheriff L, Hussain MT, Webb GJ, Patten DA, Shepherd EL, Shaw R, Weston CJ, Haldar D, Bourke S, Bhandari R, Watson S, Adams DH, Watson SP, Lalor PF (2020) The platelet receptor CLEC-2 blocks neutrophil mediated hepatic recovery in acetaminophen induced acute liver failure. Nat Commun 11:1939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen SD, Pumford NR, Boekelheide KEA, K, Pohl LR, Amouzadeh HR, Hinson JA, (1997) Selective protein covalent binding and target organ toxicity. Toxicol Appl Pharmacol 143:1–12

    Article  PubMed  CAS  Google Scholar 

  • Cover C, Liu J, Farhood A, Malle E, Waalkes MP, Bajt ML, Jaeschke H (2006) Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 216:98–107

    Article  PubMed  CAS  Google Scholar 

  • Dorman RB, Gujral JS, Bajt ML, Farhood A, Jaeschke H (2005) Generation and functional significance of CXC chemokines for neutrophil-induced liver injury during endotoxemia. Am J Physiol Gastrointest Liver Physiol 288:G880–G886

    Article  PubMed  CAS  Google Scholar 

  • Du K, Ramachandran A, McGill MR, Mansouri A, Asselah T, Farhood A, Woolbright BL, Ding WX, Jaeschke H (2017) Induction of mitochondrial biogenesis protects against acetaminophen hepatotoxicity. Food Chem Toxicol 108:339–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eash KJ, Greenbaum AM, Gopalan PK, Link DC (2010) CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 120:2423–2431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H (2002) Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci 67:322–328

    Article  PubMed  CAS  Google Scholar 

  • Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kaplowitz N (2008) Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem 283:13565–13577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hogaboam CM, Bone-Larson CL, Steinhauser ML, Lukacs NW, Colletti LM, Simpson KJ, Strieter RM, Kunkel SL (1999a) Novel CXCR2-dependent liver regenerative qualities of ELR-containing CXC chemokines. FASEB J 13:1565–1574

    Article  PubMed  CAS  Google Scholar 

  • Hogaboam CM, Simpson KJ, Chensue SW, Steinhauser ML, Lukacs NW, Gauldie J, Strieter RM, Kunkel SL (1999b) Macrophage inflammatory protein-2 gene therapy attenuates adenovirus- and acetaminophen-mediated hepatic injury. Gene Ther 6:573–584

    Article  PubMed  CAS  Google Scholar 

  • Holt MP, Cheng L, Ju C (2008) Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury. J Leukoc Biol 84:1410–1421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaeschke H (2003) Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol 284:G15-26

    Article  PubMed  CAS  Google Scholar 

  • Jaeschke H, Hasegawa T (2006) Role of neutrophils in acute inflammatory liver injury. Liver Int 26:912–919

    Article  PubMed  CAS  Google Scholar 

  • Jaeschke H, Williams CD, Ramachandran A, Bajt ML (2012) Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 32:8–20

    Article  PubMed  CAS  Google Scholar 

  • Jaeschke H, Duan L, Nguyen N, Ramachandran A (2019a) Mitochondrial Damage and Biogenesis in Acetaminophen-induced Liver Injury. Liver Res 3:150–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaeschke H, Ramachandran A, Chao X, Ding WX (2019b) Emerging and established modes of cell death during acetaminophen-induced liver injury. Arch Toxicol 93:3491–3502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaeschke H, Ramachandran A (2020) Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol 138:111240.

  • James LP, Kurten RC, Lamps LW, McCullough S, Hinson JA (2005a) Tumour necrosis factor receptor 1 and hepatocyte regeneration in acetaminophen toxicity: a kinetic study of proliferating cell nuclear antigen and cytokine expression. Basic Clin Pharmacol Toxicol 97:8–14

    Article  PubMed  CAS  Google Scholar 

  • James LP, Simpson PM, Farrar HC, Kearns GL, Wasserman GS, Blumer JL, Reed MD, Sullivan JE, Hinson JA (2005b) Cytokines and toxicity in acetaminophen overdose. J Clin Pharmacol 45:1165–1171

    Article  PubMed  CAS  Google Scholar 

  • Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 187:195–202

    PubMed  CAS  Google Scholar 

  • Ju C, Reilly TP, Bourdi M, Radonovich MF, Brady JN, George JW, Pohl LR (2002) Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem Res Toxicol 15:1504–1513

    Article  PubMed  CAS  Google Scholar 

  • Kon K, Kim JS, Jaeschke H, Lemasters JJ (2004) Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology 40:1170–1179

    Article  PubMed  CAS  Google Scholar 

  • Kozicky LK, Sly LM (2019) Depletion and Reconstitution of Macrophages in Mice. Methods Mol Biol 1960:101–112

    Article  PubMed  CAS  Google Scholar 

  • Kuboki S, Shin T, Huber N, Eismann T, Galloway E, Schuster R, Blanchard J, Edwards MJ, Lentsch AB (2008) Hepatocyte signaling through CXC chemokine receptor-2 is detrimental to liver recovery after ischemia/reperfusion in mice. Hepatology 48:1213–1223

    Article  PubMed  CAS  Google Scholar 

  • Lawson JA, Farhood A, Hopper RD, Bajt ML, Jaeschke H (2000) The hepatic inflammatory response after acetaminophen overdose: role of neutrophils. Toxicol Sci 54:509–516

    Article  PubMed  CAS  Google Scholar 

  • Lentsch AB, Yoshidome H, Cheadle WG, Miller FN, Edwards MJ (1998) Chemokine involvement in hepatic ischemia/reperfusion injury in mice: roles for macrophage inflammatory protein-2 and KC. Hepatology 27:1172–1177

    Article  PubMed  CAS  Google Scholar 

  • Lentsch AB, Kato A, Yoshidome H, McMasters KM, Edwards MJ (2000) Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology 32:169–173

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Chatterjee M, Schmid H, Beck S, Gawaz M (2016) CXCL14 as an emerging immune and inflammatory modulator. J Inflamm (lond) 13:1

    Article  Google Scholar 

  • Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Lima BH, Lopes GA, Russo RC, Avila TV, Melgaço JG, Oliveira AG, Pinto MA, Lima CX, De Paula AM, Cara DC, Leite MF, Teixeira MM, Menezes GB (2012) Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 56:1971–1982

    Article  PubMed  CAS  Google Scholar 

  • Masubuchi Y, Suda C, Horie T (2005) Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol 42:110–116

    Article  PubMed  CAS  Google Scholar 

  • McGill MR, Williams CD, Xie Y, Ramachandran A, Jaeschke H (2012) Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol Appl Pharmacol 264:387–394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehendale HM (2005) Tissue repair: an important determinant of final outcome of toxicant-induced injury. Toxicol Pathol 33:41–51

    Article  PubMed  CAS  Google Scholar 

  • Michalopoulos GK, Bhushan B (2021) Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 18:40–55

    Article  PubMed  Google Scholar 

  • Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973a) Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 187:185–194

    PubMed  CAS  Google Scholar 

  • Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB (1973b) Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther 187:211–217

    PubMed  CAS  Google Scholar 

  • Moreno SG (2018) Depleting Macrophages In Vivo with Clodronate-Liposomes. Methods Mol Biol 1784:259–262

    Article  PubMed  CAS  Google Scholar 

  • Nelson SD (1990) Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Semin Liver Dis 10:267–278

    Article  PubMed  CAS  Google Scholar 

  • Nguyen NT, Akakpo JY, Weemhoff JL, Ramachandran A, Ding WX, Jaeschke H (2021a) Impaired protein adduct removal following repeat administration of subtoxic doses of acetaminophen enhances liver injury in fed mice. Arch Toxicol 95:1463–1473

    Article  PubMed  CAS  Google Scholar 

  • Nguyen NT, Du K, Akakpo JY, Umbaugh DS, Jaeschke H, Ramachandran A (2021b) Mitochondrial protein adduct and superoxide generation are prerequisites for early activation of c-jun N-terminal kinase within the cytosol after an acetaminophen overdose in mice. Toxicol Lett 338:21–31

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Benet LZ, Burlingame AL (1998) Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. J Biol Chem 273:17940–17953

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran A, Jaeschke H (2019) Acetaminophen hepatotoxicity. Semin Liver Dis 39:221–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren X, Carpenter A, Hogaboam C, Colletti L (2003) Mitogenic properties of endogenous and pharmacological doses of macrophage inflammatory protein-2 after 70% hepatectomy in the mouse. Am J Pathol 163:563–570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roth K, Strickland J, Copple BL (2020) Regulation of macrophage activation in the liver after acute injury: Role of the fibrinolytic system. World J Gastroenterol 26:1879–1887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rumack BH, Bateman DN (2012) Acetaminophen and acetylcysteine dose and duration: past, present and future. Clin Toxicol (phila) 50:91–98

    Article  CAS  Google Scholar 

  • Saito C, Lemasters JJ, Jaeschke H (2010) c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 246:8–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shuster DE, Kehrli ME Jr, Ackermann MR (1995) Neutrophilia in mice that lack the murine IL-8 receptor homolog. Science 269:1590–1591

    Article  PubMed  CAS  Google Scholar 

  • Smilkstein MJ, Knapp GL, Kulig KW, Rumack BH (1988) Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. Analysis of the national multicenter study (1976 to 1985). N Engl J Med 319:1557–1562

    Article  PubMed  CAS  Google Scholar 

  • Stillie R, Farooq SM, Gordon JR, Stadnyk AW (2009) The functional significance behind expressing two IL-8 receptor types on PMN. J Leukoc Biol 86:529–543

    Article  PubMed  CAS  Google Scholar 

  • Strieter RM, Burdick MD, Gomperts BN, Belperio JA, Keane MP (2005) CXC chemokines in angiogenesis. Cytokine Growth Factor Rev 16:593–609

    Article  PubMed  CAS  Google Scholar 

  • Thelen M, Didichenko SA (1997) G-protein coupled receptor-mediated activation of PI 3-kinase in neutrophils. Ann N Y Acad Sci 832:368–382

    Article  PubMed  CAS  Google Scholar 

  • Tirmenstein MA, Nelson SD (1989) Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3’-hydroxyacetanilide, in mouse liver. J Biol Chem 264:9814–9819

    Article  PubMed  CAS  Google Scholar 

  • van Rooijen N, Hendrikx E (2010) Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol Biol 605:189–203

    Article  PubMed  Google Scholar 

  • Van Sweringen HL, Sakai N, Tevar AD, Burns JM, Edwards MJ, Lentsch AB (2011) CXC chemokine signaling in the liver: impact on repair and regeneration. Hepatology 54:1445–1453

    Article  PubMed  Google Scholar 

  • Watanabe H, Ohtsuka K, Kimura M, Ikarashi Y, Ohmori K, Kusumi A, Ohteki T, Seki S, Abo T (1992) Details of an isolation method for hepatic lymphocytes in mice. J Immunol Methods 146:145–154

    Article  PubMed  CAS  Google Scholar 

  • White JR, Lee JM, Young PR, Hertzberg RP, Jurewicz AJ, Chaikin MA, Widdowson K, Foley JJ, Martin LD, Griswold DE, Sarau HM (1998) Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem 273:10095–10098

    Article  PubMed  CAS  Google Scholar 

  • Williams CD, Bajt ML, Farhood A, Jaeschke H (2010) Acetaminophen-induced hepatic neutrophil accumulation and inflammatory liver injury in CD18-deficient mice. Liver Int 30:1280–1292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson GC, Kuboki S, Freeman CM, Nojima H, Schuster RM, Edwards MJ, Lentsch AB (2015) CXC chemokines function as a rheostat for hepatocyte proliferation and liver regeneration. PLoS ONE 10:e0120092

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Y, McGill MR, Du K, Dorko K, Kumer SC, Schmitt TM, Ding WX, Jaeschke H (2015) Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced hepatotoxicity in primary human hepatocytes. Toxicol Appl Pharmacol 289:213–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang W, Tao Y, Wu Y, Zhao X, Ye W, Zhao D, Fu L, Tian C, Yang J, He F, Tang L (2019) Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat Commun 10:1076

    Article  PubMed  PubMed Central  Google Scholar 

  • You Q, Holt M, Yin H, Li G, Hu CJ, Ju C (2013) Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem Pharmacol 86:836–843

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Flow Cytometry Core Laboratory, which is sponsored, in part, by the NIH/NIGMS COBRE grant P30 GM103326

Funding

This work was funded in part by a grant from National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grants R01 DK102142 and DK125465, and National Institute of General Medicine (NIGMS) funded Liver Disease COBRE grants P20 GM103549 and P30 GM118247.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Jaeschke.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5297 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.T., Umbaugh, D.S., Sanchez-Guerrero, G. et al. Kupffer cells regulate liver recovery through induction of chemokine receptor CXCR2 on hepatocytes after acetaminophen overdose in mice. Arch Toxicol 96, 305–320 (2022). https://doi.org/10.1007/s00204-021-03183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-021-03183-0

Keywords

Navigation