Skip to main content

Advertisement

Log in

A review of species differences in the control of, and response to, chemical-induced thyroid hormone perturbations leading to thyroid cancer

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

This review summarises the current state of knowledge regarding the physiology and control of production of thyroid hormones, the effects of chemicals in perturbing their synthesis and release that result in thyroid cancer. It does not consider the potential neurodevelopmental consequences of low thyroid hormones. There are a number of known molecular initiating events (MIEs) that affect thyroid hormone synthesis in mammals and many chemicals are able to activate multiple MIEs simultaneously. AOP analysis of chemical-induced thyroid cancer in rodents has defined the key events that predispose to the development of rodent cancer and many of these will operate in humans under appropriate conditions, if they were exposed to high enough concentrations of the affecting chemicals. There are conditions however that, at the very least, would indicate significant quantitative differences in the sensitivity of humans to these effects, with rodents being considerably more sensitive to thyroid effects by virtue of differences in the biology, transport and control of thyroid hormones in these species as opposed to humans where turnover is appreciably lower and where serum transport of T4/T3 is different to that operating in rodents. There is heated debate around claimed qualitative differences between the rodent and human thyroid physiology, and significant reservations, both scientific and regulatory, still exist in terms of the potential neurodevelopmental consequences of low thyroid hormone levels at critical windows of time. In contrast, the situation for the chemical induction of thyroid cancer, through effects on thyroid hormone production and release, is less ambiguous with both theoretical, and actual data, showing clear dose-related thresholds for the key events predisposing to chemically induced thyroid cancer in rodents. In addition, qualitative differences in transport, and quantitative differences in half life, catabolism and turnover of thyroid hormones, exist that would not operate under normal situations in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Redrawn from https://courses.lumenlearning.com/ap2/chapter/the-thyroid-gland/

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Derived from Crofton (2008) and Noyes et al (2019)

Fig. 6
Fig. 7
Fig. 8

Adapted from Visser et al. (2016)

Fig. 9

Redrawn from Fig. 8 from Yu et al. (2002)

Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data taken from York et al. (2003)

Similar content being viewed by others

Abbreviations

T4:

Thyroxine

T3:

Tri-iodothyronine

DIT:

Di-iodothyronine

MIT:

Mono-iodothyronine

TSH:

Thyrotropin or thyroid stimulating hormone

UDPGT:

Uridine diphosphate glucuronyltransferase

SULT:

Sulfotransferase

NIS:

Sodium-iodide symporter

TPO:

Thyroperoxidase

AOP:

Adverse outcome pathway

KE:

Key events

MIE:

Molecular initiating event

MoA:

Mode of action

Ph II:

Phase 2 metabolism

TTR:

Transthyretin

TBG:

Thyroxine binding globulin

NIS:

Sodium iodide symporter

rT3:

Reverse T3

T3S:

Sulphated T3

TRE:

Thyroid response elements

PPAR:

Peroxisome proliferator activated receptor

RXR:

Retinoid X receptor

CAR:

Constitutive androstane receptor

IGF:

Insulin like growth factor

PCB:

Polychlorinated biphenyl

PBB:

Polybrominated biphenyl

TCDD:

Tetrachlorodibenzo-p-dioxin

PTU:

6-Propylthiouracil

CSF:

Cerebrospinal fluid

MCT:

Monocarboxylate transporter

OATP:

Organic anion transporter protein

NOAEL:

No observable adverse effect level

References

  • Abe T, Kakyo M, Sakagami H et al (1998) Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with OATP2. J Biol Chem 273:22395–22401

    CAS  PubMed  Google Scholar 

  • Ahmed RG (2015) Hypothyroidism and brain developmental players. Thyroid Res 8:2. https://doi.org/10.1186/s13044-015-0013-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akosa BT, Sleight SD, Nachreiner RF et al (1982) Effects of purified polybrominated biphenyl congeners on the thyroid and pituitary glands in rats. J Am Coll Toxicol 1:23–36

    Google Scholar 

  • Alshehri B, D’Souza DG, Lee JY et al (2015) The diversity of mechanisms influenced by transthyretin in neurobiology: development, disease and endocrine disruption. J Neuroendocrinol 27:303–323

    CAS  PubMed  Google Scholar 

  • Andersen BF (1973) Iodide perchlorate discharge test in lithium-treated patients. Acta Endocrinol 73:35–46

    CAS  Google Scholar 

  • Arriagada AA, Albornoz E, Opazo MC et al (2015) Excess iodide induces an acute inhibition of the sodium/iodide symporter in thyroid male rat cells by increasing reactive oxygen species. Endocrinol. 156:1540–1551

    CAS  Google Scholar 

  • Astwood EB, Sullivan J, Bissell A et al (1943) Action of certain sulfonamides and of thiourea upon the function of the thyroid gland of the rat. Endocrinol 32:210–225

    CAS  Google Scholar 

  • Axelstad M, Boberg J, Nellemann C et al (2011) Exposure to the widely used fungicide mancozeb causes thyroid hormone disruption in rat dams but no behavioural effects in the offspring. Toxicol Sci 120:439–446

    CAS  PubMed  Google Scholar 

  • Bailey DE (1990b) KERB Herbicide (Technical, No Clay): 24-month dietary chronic toxicity/oncogenicity study in rats—24-month oncogenicity phase. Unpublished report of Rohm and Haas Company, a wholly-owned subsidiary of The Dow Chemical Company, Midland, Michigan (cited in Papineni et al 2015).

  • Bard D, Verger P, Hubert P (1997) Chernobyl, 10 years after: health consequences. Epidemiol Rev 19:187–204

    CAS  PubMed  Google Scholar 

  • Bartalena L, Robbins J (1993) Thyroid hormone transport proteins. Clin Lab Med 13:583–598

    CAS  PubMed  Google Scholar 

  • Bartsch R, Brinkmann B, Jahnke G et al (2018) Human relevance of follicular thyroid tumors in rodents caused by nongenotoxic substances. Reg Toxicol Pharmacol 98:199–208

    CAS  Google Scholar 

  • Bianco AC, Kim BW (2006) Deiodinases: implications of the local control of thyroid hormone action. J Clin Investig 116:2571–2579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco AC, Salvatore D, Gereben B et al (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. End Rev 23:38–89

    CAS  Google Scholar 

  • Blount BC, Pirkle JL, Osterloh JD et al (2006) Urinary perchlorate and thyroid hormone levels in adolescent and adult men and women living in the United States. Environ Health Perspect 114:1865–1871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bogazzi F, Bartalena L, Cosci C et al (2003) Treatment of Type II amiodarone-induced thyrotoxicosis by either iopanoic acid or glucocorticoids: a prospective, randomized study. J Clin Endocrinol Metab 88:1999–2002

    CAS  PubMed  Google Scholar 

  • Boobis AR, Cohen SM, Dellarco V et al (2006) IPCS framework for analyzing the relevance of a cancer mode of action for humans. Crit Rev Toxicol 36:781–792

    PubMed  Google Scholar 

  • Borzelleca JF, Capen CC, Hallagan JB (1987) Lifetime toxicity/carcinogenicity study of FD & C Red No 3 (erythrosine) in rats. Food Chem Toxicol 25:723–733

    CAS  PubMed  Google Scholar 

  • Bounacer A, Wicker R, Caillou B et al (1997) High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene 15:1263–1273

    CAS  PubMed  Google Scholar 

  • Brent GA (2008) Clinical practice. Graves’ disease New Engl J Med 358:2594–2605

    CAS  PubMed  Google Scholar 

  • Brent GA (2012a) Hypothyroidism and thyroiditis. In: Melmed SP, Larsen PR, Kronenberg HM (eds) Williams textbook of endocrinology. Elsevier, Philadelphia

    Google Scholar 

  • Brent GA (2012b) Mechanisms of thyroid hormone action. J Clin Investig 122:3035–3043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brucker-Davis F (1998) Effects of environmental synthetic chemicals on thyroid function. Thyroid 8:827–856

    CAS  PubMed  Google Scholar 

  • Capen C (1996) Toxic responses of the endocrine system. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons, 5th edn. McGraw-Hill, New York, pp 623–624

    Google Scholar 

  • Capen CC (1999) Thyroid and parathyroid toxicology. In: Harvey PW, Rush KC, Cockburn A (eds) Endocrine and hormonal toxicolog. Wiley Press, Hoboken, pp 33–66

    Google Scholar 

  • Capen CC, Martin SL (1989) The effects of xenobiotics on the structure and function of thyroid follicular and C-cells. Toxicol Pathol 17:266–293

    CAS  PubMed  Google Scholar 

  • Carlson HE, Temple R, Robbins J (1973) Effect of lithium on thyroxine disappearance in man. J Clin Endocrinol Metab 36:1251–1254

    CAS  PubMed  Google Scholar 

  • Carroll R, Matfin G (2010) Endocrine and metabolic emergencies: thyroid storm. Ther Adv Endocrinol Metab 1:139–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalieri RR, Pitt-Rivers R (1981) The effects of drugs on the distribution and metabolism of thyroid hormones. Pharmacol Rev 33:55–80

    CAS  PubMed  Google Scholar 

  • Cayir A, Turan MI, Esin IS (2014) An examination of the effects of phenobarbital on thyroid function tests in childhood epilepsy. Hong Kong J Paed 19:71–74

    Google Scholar 

  • Chang L, Munro SL, Richardson SJ et al (1999) Evolution of thyroid hormone binding by transthyretins in birds and mammals. Eur J Biochem 259:534–542

    CAS  PubMed  Google Scholar 

  • Chanoine J-P, Braverman LE, Farwell AP et al (1993) The thyroid gland is a major source of circulating T3 in the rat. J Clin Investig 91:2709–2713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan KR, Kodavanti PR, McKinney JD (2000) Assessing the role of ortho-substitution on polychlorinated biphenyl binding to transthyretin, a thyroxine transport protein. Toxicol Appl Pharmacol 162:10–21

    CAS  PubMed  Google Scholar 

  • Cheek AO, Kow K, Chen J et al (1999) Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Environ Health Percept 107:273–278

    CAS  Google Scholar 

  • Cheng SY, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocrinol Rev 31:139–170

    CAS  Google Scholar 

  • Choksi NY, Jahnke GD, St. Hilaire C et al (2003) Role of Thyroid hormones in human and laboratory animal reproductive health. Birth Defects Res (Part B) 68:479–491

    CAS  Google Scholar 

  • Clements FW (1954) The relationship of thyrotoxicosis and carcinoma of the thyroid to endemic goitre. Med J Australia 41:894–897

    Google Scholar 

  • Cohen SM, Ellwein LB (1991) Genetic errors, cell proliferation, and carcinogenesis. Can Res 51:6493–6505

    CAS  Google Scholar 

  • Cohen HN, Beastall GH, Ratcliffe WA et al (1980) Effects on thyroid functions of sulphonamide and trimethoprim combination drugs. Br Med J 281(6241):646–647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colnot T, Dekant W (2017) Approaches for grouping of pesticides into cumulative assessment groups for risk assessment of pesticide residues in food. Reg Toxicol Pharmacol 83:89–99

    CAS  Google Scholar 

  • Cooper DS, Axelrod L, DeGroot LJ et al (1981) Congenital goitre and development of metastatic follicular carcinoma with evidence for a leak of non-hormonal iodide: clinical, pathological, kinetic, and biochemical studies and a review of the literature. J Clin Endocrinol Metab 52:924–932

    Google Scholar 

  • Craft ES, DeVito MJ, Crofton KM (2002) Comparative responsiveness of hypothyroxinemia and hepatic enzyme induction in Long-Evans rats versus C57Bl/6J mice exposed to TCDD-like and Phenobarbital-like Polychlorinated Biphenyl Congeners. Toxicol. Sci 68:372–380

    CAS  PubMed  Google Scholar 

  • Crofton KM (2008) Thyroid disrupting chemicals: mechanisms and mixtures. Int J Androl 31:209–223

    CAS  PubMed  Google Scholar 

  • Curran PG, DeGroot LJ (1991) The effect of hepatic enzyme-inducing drugs on thyroid hormones and the thyroid gland. Endocrinol Rev 12:135–150

    CAS  Google Scholar 

  • Curtis SW, Terrell ML, Jacobson MH et al (2019) Thyroid hormone levels associate with exposure to polychlorinated biphenyls and polybrominated biphenyls in adults exposed as children. Environ Health 18(75):2020. https://doi.org/10.1186/s12940-019-0509-zaccessed25thMarch

    Article  Google Scholar 

  • Daminet S, Ferguson DC (2003) Influence of drugs on thyroid function in dogs. J Vet Int Med 17:463–472

    Google Scholar 

  • Dellarco VL, McGregor D, Berry C et al (2006) Thiazopyr and thyroid disruption: case study within the context of the 2006 IPCS human relevance framework for analysis of a cancer mode of action. Crit Rev Toxicol 36:793–801

    CAS  PubMed  Google Scholar 

  • Dentice M, Marsili A, Zavacki A-M et al (2013) The deiodinases and the control of intracellular thyroid hormone signalling during cellular differentiation. Biochim Biophys Acta. 1830:3937–3945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cosmo C, Liao XH, Dumitrescu AM et al (2010) Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion. J Clin Investig 120:3377–3388

    PubMed  PubMed Central  Google Scholar 

  • Doerge DR, Decker CJ (1994) Inhibition of peroxidase-catalyzed reactions by arylamines: mechanism for the anti-thyroid action of sulfamethazine. Chem Res Toxicol 7:164–169

    CAS  PubMed  Google Scholar 

  • Dohler KD, Wong CC, Von zur Muhlen A (1979) The rat as a model for the study of drug effects on thyroid function: consideration of methodological problems. Pharmacol Therap B 5:305–318

    CAS  Google Scholar 

  • Dumitrescu AM, Liao XH, Best TB et al (2004) A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Gen 74:168–175

    CAS  Google Scholar 

  • ECHA (European Chemicals Agency) 2015. Guidance on the application of the CLP criteria, version 4.1. 2015. https://echa.europa.eu/documents/10162/23036412/clp_en.pdf/58b5dc6d-ac2a-4910-9702-e9e1f5051cc5. Accessed 21 Nov 2020

  • ECHA/EFSA (2018). Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. Adapted 5 June 2018

  • Eelkman RSJ, Kaptein E, Visser TJ (1989) Serum triiodothyronine sulfate in man measured by radioimmunoassay. J Clin Endocrinol Metab 69:552–556

    Google Scholar 

  • EFSA (European Food Safety Authority), Crivellente F, Hart A, Hernandez-Jerez AF, HougaardBennekou S, Pedersen R, Terron A, Wolterink G, Mohimont L (2019) Scientific report on the establishment of cumulative assessment groups of pesticides for their effects on the thyroid. EFSA J 17(9):5801. https://doi.org/10.2903/j.efsa.2019.5801

    Article  Google Scholar 

  • EFSA-PPR-Panel (2014) (EFSA Panel on Plant Protection Products and their Residues) Scientific opinion on the identification of pesticides to be included in cumulative assessment groups on the basis of their toxicological profile (2014 update). EFSA J 11(131):2014

    Google Scholar 

  • Elman DS (1958) Familial association of nerve deafness with nodular goitre and thyroid carcinoma. N Engl J Med 259:219–223

    CAS  PubMed  Google Scholar 

  • EMA (2017) Guideline on strategies to identify and mitigate risks for first-in-human and early clinical trials with investigational medicinal products. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-strategies-identify-mitigate-risks-first-human-early-clinical-trials-investigational_en.pdf. Accessed 21 Nov 2020

  • Emi Y, Ikushiro S, Kato Y (2007) Thyroxine-metabolizing rat uridine diphosphate glucuronosyltransferase 1A7 is regulated by thyroid hormone receptor. Endocrinol 148:6124–6133

    CAS  Google Scholar 

  • EPA (2001) The Determination of Whether Dithiocarbamate Pesticides Share a Common Mechanism of Toxicity. https://archive.epa.gov/pesticides/reregistration/web/pdf/dithiocarb.pdf. Accessed 21 Nov 2020

  • Episkopou V, Maeda S, Nishiguchi S et al (1993) Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci USA 90:2375–2379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fattori J, Campos JLO, Doratioto TR et al (2015) RXR Agonist modulates TR: corepressor dissociation upon 9-cis retinoic acid treatment. Mol Endocrinol 29:258–273

    PubMed  Google Scholar 

  • Feldt-Rasmussen U, and Rasmussen AK (2007) Thyroid hormone transport and actions. In: Krassas GE, Rivkees SA, Kiess W (eds) Diseases of the thyroid in childhood and adolescence. Ped Adolesc Med, Basel, Karger, vol 11, pp 80–103

  • Findlay KAB, Kaptein E, Vissser TJ et al (2000) Characterization of the uridine diphosphate-glucuronosyltransferase-catalyzing thyroid hormone glucuronidation in man. J Clin Endocrinol Metab 85:2879–2883

    CAS  PubMed  Google Scholar 

  • Flink IL, Bailey TJ, Gustafson TA et al (1986) Complete amino acid sequence of human thyroxine-binding globulin deduced from cloned DNA: close homology to the serine antiproteases. Proc Natl Acad Sci USA 83:7708–7712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca TL, Correa-Medina M, Campos MP et al (2013) Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J Clin Investig 123:1492–1500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster JR (1997) The role of cell proliferation in chemically induced carcinogenesis. J Comp Pathol 116:113–144

    CAS  PubMed  Google Scholar 

  • Fox CS, Pencina MJ, D’Agostino RB et al (2008) Relations of thyroid function to body weight: cross-sectional and longitudinal observations in a community-based sample. Arch Int Med 168:587–592

    Google Scholar 

  • Franceschi S, Preston-Martin S, Dal Maso L et al (1999) A pooled analysis of case–control studies of thyroid cancer. IV. Benign thyroid diseases. Cancer Causes Control 10:583–595

    CAS  PubMed  Google Scholar 

  • Friesema EC, Grueters A, Biebermann H et al (2004) Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364(9443):1435–1437

    CAS  PubMed  Google Scholar 

  • Frumess RD, Larsen PR (1975) Correlation of serum triiodothyronine (T3) and thyroxine (T4) with biologic effects of thyroid hormone replacement in propylthiouracil-treated rats. Metabolism 24:547–554

    CAS  PubMed  Google Scholar 

  • Gauger KJ, Kato Y, Haraguchi K et al (2004) Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors. Environ Health Percept 112:516–523

    CAS  Google Scholar 

  • Gerber H, Studer H, Conti A et al (1981) Reaccumulation of thyroglobulin and colloid in rat and mouse thyroid follicles during intense thyrotropin stimulation A clue to the pathogenesis of colloid goiters. J Clin Investig 68:1338–1347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gereben B, Zavacki AM, Ribich S et al (2008) Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocrin Rev 29:898–938

    CAS  Google Scholar 

  • Gereben B, McAninch EA, Ribeiro MO et al (2015) Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol 11:642–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghamari-Langroudi M, Vella KR, Srisai D et al (2010) Regulation of thyrotropin-releasing hormone-expressing neurons in paraventricular nucleus of the hypothalamus by signals of adiposity. Mol Endocrinol 24:2366–2381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graham SL, Davis KJ, Hansen WH, Graham CH (1975) Effects of prolonged ethylene thiourea ingestion on the thyroid of the rat. Food Cosmet Toxicol 13:493–499

    CAS  PubMed  Google Scholar 

  • Greer MA, Goodman G, Pleus RC et al (2002) Health effects assessment for environmental perchlorate contamination: the dose response for inhibition of thyroidal radioiodine uptake in humans. Environ Health Perspect 110:927–937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haines C, Chatham LR, Vardy A et al (2019) Comparison of the hepatic and thyroid gland effects of sodium phenobarbital and pregnenolone-16α-carbonitrile in wild-type and constitutive androstane receptor (CAR)/pregnane X receptor (PXR) knockout rats. Xenobiotica 49:227–238

    CAS  PubMed  Google Scholar 

  • Hallgren S, Darnerud PO (2002) Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and chlorinated paraffins (CPs) in rats—testing interactions and mechanisms for thyroid hormone effects. Toxicol 177:227–243

    CAS  Google Scholar 

  • Hard GC (1998) Recent developments in the investigation of thyroid regulation and thyroid carcinogenesis. Environ Health Perspect 106:427–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haseman JK, Huff JE, Rao GN et al (1985) Neo-plasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N x C3H/HeN)F1 (B6C3F1) mice. J Natl Cancer Inst 75:975–984

    CAS  PubMed  Google Scholar 

  • Hassan I, El-Masri H, Kosian PA, Ford J, Degitz SJ, Gilbert ME (2017) Neurodevelopment and thyroid hormone synthesis inhibition in the rat: quantitative understanding within the adverse outcome pathway framework. Toxicol Sci 160:57–73

    CAS  PubMed  Google Scholar 

  • He Y, Yang J, Huang S et al (2019) Protective effect of mulberry crude extract against nonylphenol-induced thyroid disruption by inhibiting the activity of deiodinase in rats. Gen Comp Endocrinol 270:90–95

    CAS  PubMed  Google Scholar 

  • Helmreich DL, Tylee D (2011) Thyroid hormone regulation by stress and behavioural differences in adult male rats. Horm Behav 60:284–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hershman JM (1974) Clinical application of thyrotropin-releasing hormone. N Engl J Med 290:886–890

    Google Scholar 

  • Heuer H, Visser TJ (2009) Minireview: pathophysiological importance of thyroid hormone transporters. Endocrinology 150:1078–1083

    CAS  PubMed  Google Scholar 

  • Hiasa Y, Kitahori Y, Kitamura M et al (1991) Relationships between serum thyroid stimulating hormone levels and the development of thyroid tumors in rats treated with N-bis-(2-hydroxypropyl)nitrosamine. Carcinogenesis 12:873–877

    CAS  PubMed  Google Scholar 

  • Hill RN, Erdreich LS, Paynter OE et al (1989) Thyroid follicular cell carcinogenesis. Fund Appl Toxicol 12:629–697

    CAS  Google Scholar 

  • Hill RN, Crisp TM, Hurley PM et al (1998) Risk assessment of thyroid follicular cell tumors. Environ Health Percept 106:447–457

    CAS  Google Scholar 

  • Hingorani M, Spitzweg C, Vassauz G et al (2010) The biology of the sodium iodide symporter andits potential for targeted gene delivery. Curr Cancer Drug Targets 10:242–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holm LE, Wiklund KE, Lundell GE et al (1988) Thyroid cancer after diagnostic doses of iodine-131: a retrospective cohort study. J Natl Cancer Inst 80:1132–1138

    CAS  PubMed  Google Scholar 

  • Hood A, Klaassen CD (2000a) Effects of microsomal enzyme inducers on outer ring deiodinase activity towards thyroid hormones in various rat tissues. Toxicol Appl Pharmacol 163:240–248

    CAS  PubMed  Google Scholar 

  • Hood A, Klaassen CD (2000b) Differential effects of microsomal enzyme inducers on in vitro thyroxine (T(4)) and triiodothyronine (T(3)) glucuronidation. Toxicol Sci 55:78–84

    CAS  PubMed  Google Scholar 

  • Hornung MW, Korte JJ, Olker JH et al (2019) Screening the toxcast phase 1 chemical library for inhibition of deiodinase type 1 activity. Toxicol Sci 162:570–581

    Google Scholar 

  • Hsu JH, Zavacki AM, Harney JW, Brent GA (1995) Retinoid-X receptor (RXR) differentially augments thyroid hormone response in cell lines as a function of the response element and endogenous RXR content. Endocrinology 136:421–430

    CAS  PubMed  Google Scholar 

  • Hurley PM, Hill RN, Whiting RJ (1998) Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents. Environ Health Percept 106:437–445

    CAS  Google Scholar 

  • IARC (2017) Species differences in thyroid, kidney and urinary bladder carcinogenesis. In: Capen CC, Dybing E, Rice JM, Wilbourn JD (eds). IARC Scientific Publications No. 147. 1999. https://monographs.iarc.fr/ENG/Publications/pub147/IARCpub147.pdf Accessed 30 Oct 2017

  • Imai Y, Toyoda N, Maeda A et al (2001) Type 2 iodothyronine deiodinase expression is upregulated by the protein kinase A dependent pathway and is downregulated by the protein kinase C-dependent pathway in cultured human thyroid cells. Thyroid 11:899–907

    CAS  PubMed  Google Scholar 

  • Ishigaki S, Abramovitz M, Listowsky I (1989) Glutathione-S-transferases are major cytosolic thyroid hormone binding proteins. Arch Biochem Biophys 273:265–272

    CAS  PubMed  Google Scholar 

  • Ishihara A, Sawatsubashi S, Yamauchi K (2003) Endocrine disrupting chemicals: interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Mol Cell Endocrinol 199:105–117

    CAS  PubMed  Google Scholar 

  • Iwen KA, Schroder E, Brabant G (2013) Thyroid hormone and the metabolic syndrome. Eur Thyroid J 2:83–92

    PubMed  PubMed Central  Google Scholar 

  • Jahnke GD, Choksi NY, Moore JA et al (2004) Thyroid toxicants: assessing reproductive health effects. Environ Health Percept 112:363–368

    CAS  Google Scholar 

  • Jansen J, Friesema EC, Milici C et al (2005) Thyroid hormone transporters in health and disease. Thyroid 15:757–768

    CAS  PubMed  Google Scholar 

  • Johnson S, McKillop D, Miller J, Smith IK (1993) The effects on rat thyroid function of an hepatic microsomal enzyme inducer. Hum Exp Toxicol 13:493–499

    Google Scholar 

  • Judson R, Paul-Friedman K, Houck K, Mansouri K, Browne P, Kleinstreuer N (2019) New approach methods for testing chemicals for endocrine disruption potential. Curr Opin Toxicol 9:40–47

    Google Scholar 

  • Kabat EA, Moore DH, Landow H (1942) An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. J Clin Investig 21:571–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kackar R, Srivastava MK, Raizada RB (1997) Studies on rat thyroid after oral administration of mancozeb: morphological and biochemical evaluations. J AppI Toxicol 17:369–375

    CAS  Google Scholar 

  • Kaneko JJ (1989) Thyroid function. In: Kaneko JJ (ed) Clinical biochemistry of domestic animals. Academic Press, Inc., New York, pp 634–635

    Google Scholar 

  • Karapanou O, Papadimitriou A (2011) Thyroid hormone transporters in the human. Hormones 10:270–279

    PubMed  Google Scholar 

  • Kato H, Fukuda T, Parkison C et al (1989) Cytosolic thyroid hormone-binding protein is a monomer of pyruvate kinase. Proc Natl Acad Sci USA 86:7861–7865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly G (2000) Peripheral metabolism of thyroid hormones: a review. Altern Med Rev 5:306–333

    CAS  PubMed  Google Scholar 

  • Kersseboom S, Visser TJ (2011) MCT8: from gene to disease and therapeutic approach. Ann Endocrinol 72:77–81

    CAS  Google Scholar 

  • Kester MHA, Van Dijk CH, Tibboel D et al (1999) Sulfation of thyroid hormone by estrogen sulfotransferase. J Clin Endocrinol Metab 84:2577–2580

    CAS  PubMed  Google Scholar 

  • Kester MH, Kaptein E, Van Dijk CH et al (2002) Characterization of iodothyronine sulfatase activities in human and rat liver and placenta. Endocrinology 143:814–819

    CAS  PubMed  Google Scholar 

  • Kieffer JD, Mover H, Federico P et al (1976) Pituitary–thyroid axis in neonatal and adult rats: comparison of the sexes. Endocrinology 98:295–304

    CAS  PubMed  Google Scholar 

  • Kitahara CM, Sosa JA (2016) The changing incidence of thyroid cancer. Nat Rev Endocrinol 12:646–653

    PubMed  Google Scholar 

  • Klaassen CD, Hood AM (2001) Effects of microsomal enzyme inducers on thyroid follicular cell proliferation and thyroid hormone metabolism. Toxicol Pathol 29:34–40

    CAS  PubMed  Google Scholar 

  • Klammer H, Schlecht C, Wuttke W et al (2007) Effects of a 5-day treatment with the UV-filter octyl-methoxycinnamate (OMC) on the function of the hypothalamo-pituitary-thyroid function in rats. Toxicology 238:192–199

    CAS  PubMed  Google Scholar 

  • Kliewer SA, Umesono K, Mangelsdorf DJ et al (1992) Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone, and vitamin D3 signalling. Nature 355:446–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles JM, Garrett GS, Gorstein J et al (2017) Household coverage with adequately iodized salt varies greatly between countries and by residence type and socioeconomic status within countries: results from 10 national coverage surveys. J Nutr 147:1004S-1014S

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen N, Laurberg P, Rasmussen LB et al (2005) Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J Clin Endocrinol Metab 90:4019–4024

    CAS  PubMed  Google Scholar 

  • Kohrle J, Fang SL, Yang Y et al (1989) Rapid effects of the flavonoid EMD 21388 on serum thyroid hormone binding and thyrotropin regulation in the rat. Endocrinology 125:532–537

    CAS  PubMed  Google Scholar 

  • Kondo T, Ikenaka Y, Nakayama SMM et al (2017) Uridine diphosphate-glucuronosyltransferase (UGT)2B subfamily interspecies differences in carnivores. Toxicol Sci 158:90–100

    CAS  PubMed  Google Scholar 

  • Kotwal A, Priya R, Qadeer I (2007) Goitre and other iodine deficiency disorders: a systematic review of epidemiological studies to deconstruct the complex web. Arch Med Res 38:1–14

    CAS  PubMed  Google Scholar 

  • Kwon D, Chung H-K, Shin W-S et al (2018) Toxicological evaluation of dithiocarbamate fungicide mancozeb on the endocrine functions in male rats. Mol Cell Toxicol 14:105–112

    CAS  Google Scholar 

  • Lans MC, Klasson-Wehler E, Willemsen M et al (1993) Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-pdioxins and -dibenzofurans with human transthyretin. Chem-Biol Int 88:7–21

    CAS  Google Scholar 

  • Larsen PR, Zavacki AM (2012) The role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. Eur Thyroid J 1:232–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leung AM, Pearce EN, Braverman LE (2010) Perchlorate, iodine and the thyroid. Best practice and research. Clin Endocrinol Metab 24:133–141

    CAS  Google Scholar 

  • Lewandowski TA, Seeley MR, Beck BD (2003) Interspecies differences in susceptibility to perturbation of thyroid homeostasis: a case study with perchlorate. Reg Toxicol Pharmacol 39:348–362

    Google Scholar 

  • Li M, Eastman CJ (2012) The changing epidemiology of iodine deficiency. Nat Rev Endocrinol 8:434–440

    CAS  PubMed  Google Scholar 

  • Li Y, Kumazawa T, Ishiguro T et al (2011) Hypothyroidism caused by phenobarbital affects patterns of estrous cyclicity in rats. Congenit Anomalies 51:55–61

    Google Scholar 

  • Liesenkötter KP, Göpel W, Bogner U et al (1995) Earliest prevention of endemic goitre by iodine supplementation during pregnancy. Eur J Endocrinol 134:443–448

    Google Scholar 

  • Liu YY, Brent GA (2010) Thyroid hormone crosstalk with nuclear receptor signalling in metabolic regulation. Trends Endocrinol Metab 21:166–173

    CAS  PubMed  Google Scholar 

  • Liu L, Klaassen CD (1996) Regulation of hepatic sulfotransferases by steroidal chemicals in rats. Drug Metab Dispos 24:854–858

    CAS  PubMed  Google Scholar 

  • Liu J, Liu Y, Barter RA, Klaassen CD (1995) Alteration of thyroid homeostasis by UDP-glucuronosyltransferase inducers in rats: a dose-response study. J Pharmacol Exp Ther 273:977–985

    CAS  PubMed  Google Scholar 

  • Liu YY, Heymann RS, Moatamed F et al (2007) A mutant thyroid hormone receptor alpha antagonizes peroxisome proliferator-activated receptor alpha signaling in vivo and impairs fatty acid oxidation. Endocrinology 148:1206–1217

    CAS  PubMed  Google Scholar 

  • Logan A, Black EG, Gonzalez AM et al (1992) Basic fibroblast growth factor: an autocrine mitogen of rat thyroid follicular cells? Endocrinology 130:2363–2372

    CAS  PubMed  Google Scholar 

  • Longnecker MP, Wolff MS, Gladen BC et al (2003) Comparison of polychlorinated biphenyl levels across studies of human neurodevelopment. Environ Health Percept 111:65–70

    CAS  Google Scholar 

  • Lu C, Cheng S-Y (2010) Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signalling with peroxisome proliferator-activated receptors. J Mol Endocrinol 44:143–154

    CAS  PubMed  Google Scholar 

  • Lueprasitsakul W, Alex S, Fang SL et al (1990) Flavonoid administration immediately displaces thyroxine (T4) from serum transthyretin, increases serum free T4, and decreases serum thyrotropin in the rat. Endocrinology 126:2890–2895

    CAS  PubMed  Google Scholar 

  • Maciel RMB, Moses AC, Villone G et al (1988) Demonstration of the production and physiological role of insulin-like growth factor 11 in rat thyroid follicular cells in culture. J Clin Invest 82:1546–1553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie C, Mackenzie JB (1943) Effect of sulfonamides and thioureas on the thyroid gland and basal metabolism. Endocrinology 32:185–209

    CAS  Google Scholar 

  • Mackenzie JB, Mackenzie CG, McCollum EV (1941) The effect of sulfanyl guanidine on the thyroid in the rat. Science 94:518–519

    CAS  PubMed  Google Scholar 

  • Maglich JM, Watson J, McMillen PJ et al (2004) The nuclear receptor CAR is a regulator of thyroid hormone metabolism during caloric restriction. J Biol Chem 279:19832–19838

    CAS  PubMed  Google Scholar 

  • Malendowicz LK (1977) Sex dimorphism in the thyroid gland. I. Morphometric studies on the thyroid gland of intact adult male and female rats. Endokrinologie. 69(3):326–328

    CAS  PubMed  Google Scholar 

  • Malendowicz LK, Majchrzak M (1981) Sex dimorphism in the thyroid gland. III. Morphometric studies on the rat thyroid gland in the course of postnatal ontogenesis. Endokrinologie 77(3):297–302

    CAS  PubMed  Google Scholar 

  • Malik R, Hodgson H (2002) The relationship between the thyroid gland and the liver. Q J Med 95:559–569

    CAS  Google Scholar 

  • Marinovich M, Guizzetti M, Ghilardi F et al (1997) Thyroid peroxidase as toxicity target for dithiocarbamates. Arch Toxicol 71:508–512

    CAS  PubMed  Google Scholar 

  • Mazonakis M, Tzedakis A, Damilakis J et al (2007) Thyroid dose from common head and neck CT examinations in children: is there an excess risk for thyroid cancer induction? Eur Radiol 17:1352–1357

    PubMed  Google Scholar 

  • McClain RM (1989) The significance of hepatic microsomal enzyme induction and altered thyroid function in rats: implications for thyroid gland neoplasia. Toxicol Pathol 17:294–306

    CAS  PubMed  Google Scholar 

  • McClain RM (1995) Mechanistic considerations for the relevance of animal data on thyroid neoplasia to human risk assessment. Mut Res/Fund Mol Mech Mutagen 333:131–142

    CAS  Google Scholar 

  • McAninch EA, Bianco AC (2016) The history and future of treatment of hypothyroidism. Ann Int Med 164:50–56

    PubMed  Google Scholar 

  • McClain RM, Posch RC, Bosakowski T et al (1988) Studies on the mode of action for thyroid gland tumor promotion in rats by phenobarbital. Toxicol Appl Pharmacol 94:254–265

    CAS  PubMed  Google Scholar 

  • McClain RM, Levin AA, Posch R et al (1989) The effect of phenobarbital on the metabolism and excretion of thyroxine in rats. Toxicol Appl Pharmacol 99:216–228

    CAS  PubMed  Google Scholar 

  • McGirr EM, Clement WE, Currie AR et al (1959) Impaired dehalogenase activity as cause of goitre with malignant changes. Scott Med J 4:232–241

    CAS  PubMed  Google Scholar 

  • McNabb FMA, Darras VM (2014) Anatomy, embryology, and histology of thyroid glands. In: Scanes C (ed) Sturkie’s Avian physiology, 6th edn. Academic Press, New York, pp 535–547

    Google Scholar 

  • McTiernan AM, Weiss NS, Daling JR (1984) Incidence of thyroid cancer in women in relation to previous exposure to radiation therapy and history of thyroid disease. J Natl Cancer Inst 73:575–581

    CAS  PubMed  Google Scholar 

  • Meek ME, Palermo CM, Bachman AN et al (2014a) Mode of action human relevance (species concordance) framework: evolution of the Bradford Hill considerations and comparative analysis of weight of evidence. J Appl Toxicol 34:595–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meek ME, Boobis A, Cote I et al (2014b) New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis. J Appl Toxicol 34:1–18

    CAS  PubMed  Google Scholar 

  • Meerts IA, van Zanden JJ, Luijks EA et al (2000) Potent competitive interactions of some brominated flame retardants and related compounds wuth human transthyretin in vitro. Toxicol Sci 56:96–104

    Google Scholar 

  • Mendel CM, Cavalieri RR, Weisiger RA (1988) Uptake of thyroxine by the perfused rat liver: implications for the free hormone hypothesis. Am J Physiol 255:E110–E119

    CAS  PubMed  Google Scholar 

  • Merrill EA, Clewell RA, Gearhart JM et al (2003) PBPK predictions of perchlorate distribution and its effect on thyroid uptake of radioiodide in the male rat. Toxicol Sci 73:256–269

    CAS  PubMed  Google Scholar 

  • Miller MD, Crofton KM, Rice DC et al (2009) Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes. Environ Health Percept 117:1033–1041

    CAS  Google Scholar 

  • Minelli R, Gardini E, Bianconi L et al (1992) Subclinical hypothyroidism, overt thyrotoxicosis and subclinical hypothyroidism: the subsequent phases of thyroid function in a patient chronically treated with amiodarone. J Endocrinol Investig 15:853–855

    CAS  Google Scholar 

  • Monk JA, Sims NA, Dziegielewska KM et al (2013) Delayed development of specific thyroid hormone-regulated events in transthyretin null mice. Am J Physiol Endocrinol Metab 304:E23–E31

    CAS  PubMed  Google Scholar 

  • Moriarty GC, Tobin RB (1976) An immunocytochemical study of TSH storage in rat thyroidectomy cells with and without D or L thyroxine treatment. J Histochem Cytochem 24:1140–1149

    CAS  PubMed  Google Scholar 

  • Morse DC, Groen D, Veerman M et al (1993) Interference of polychlorinated biphenyls in hepatic and brain thyroid hormone metabolism in foetal and neonatal rats. Toxicol Appl Pharmacol 122:27–33

    CAS  PubMed  Google Scholar 

  • Motomura K, Brent GA (1998) Mechanisms of thyroid hormone action. Implications for the clinical manifestation of thyrotoxicosis. Endocrinol Metab Clin N Am 27:1–23

    CAS  Google Scholar 

  • Mullur R, Liu Y-Y, Brent GA (2014) Thyroid hormone regulation of metabolism. Physiol Rev 94:355–382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami M, Araki O, Hosoi Y et al (2001) Expression and regulation of type II iodothyronine deiodinase in human thyroid gland. Endocrinology 142:2961–2967

    CAS  PubMed  Google Scholar 

  • Nagao H, Imazu T, Hayashi H et al (2011) Influence of thyroidectomy on thyroxine metabolism andturnover rate in rats. J Endocrinol 210:117–123

    CAS  PubMed  Google Scholar 

  • Narayana SK, Woods DR, Boos CJ (2011) Management of amiodarone-related thyroid problems. Ther Adv Endocrinol Metab 2:115–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikawa S (1983) Effects of sulfonamide on the pituitary-thyroid gland. 1. Morphological changes of thyroid gland and variation in plasma thyroxine and triiodothyronine. J Toxicol Pathol 8:47–59

    CAS  Google Scholar 

  • Nishimura M, Naito S (2008) Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab Pharmaco 23:22–44

    CAS  Google Scholar 

  • Norford DC, Meuten DJ, Cullen JM et al (1993) Pituitary and thyroid gland lesions induced by 2-mercaptobenzimidazole (2-MBI) inhalation in male fischer-344 rats. Toxicol Pathol 21:456–464

    CAS  PubMed  Google Scholar 

  • Noyes PD, Friedman KP, Browne P et al (2019) Evaluating chemicals for thyroid disruption: opportunities and challenges with in vitro testing and adverse outcome pathway approaches. Environ Health Perspect. https://doi.org/10.1289/EHP5297

    Article  PubMed  PubMed Central  Google Scholar 

  • NTP (1995) National Toxicology Program Technical Report Series No. 388. NTP technical report on the perinatal toxicology and carcinogenesis studies of ethylene thiourea (CAS No. 96-45-7) in F344/n rats and B6C3F1 mice (feed studies). https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr388.pdf. Accessed 1 Apr 2020

  • NTP (2006) NTP technical report on the toxicology and carcinogenesis studies of 2,2’,4,4’,5,5’- Hexachlorobiphenyl (PCB 153) (CAS NO. 35065-27-1) in Female Harlan Sprague-Dawley Rats (Gavage Studies). May 2006. NTP TR529. NIH Publication No. 06-4465, National Institutes of Health Public Health Service, U.S. Department of Health and Human Services

  • Oetting A, Yen PM (2007) New insights into thyroid hormone action. Best practice & research. Clin Endocrinol Metabol 21:193–208

    CAS  Google Scholar 

  • Olker JH, Korte JJ, Denny JS, Hartig PC, Cardon MC, Knutsen CN, Kent PM, Christensen JP, Degitz SJ (2019) Hornung MW screening the toxcast phase 1, phase 2, and e1k chemical libraries for inhibitors of iodothyronine deiodinases. Tox Sci 168(2):430–442

    CAS  Google Scholar 

  • O'Neil WM, Marshall WD (1984) Goitrogenic effects of ethylenethiourea on rat thyroid. Pestic Biochem Physiol 21:92–101

    CAS  Google Scholar 

  • Oppenheimer JH, Bernstein G, Surks MI (1968) Increased thyroxine turnover and thyroidal function after stimulation of hepatocellular binding of thyroxine by phenobarbital. J Clin Invest 47:1399–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oppenheimer JH, Schwartz HL, Lane JT et al (1991) Functional relationship of thyroid hormone-induced lipogenesis, lipolysis, and thermogenesis in the rat. J Clin Investig 87:125–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palha JA, Episkopoull V, Maeda S et al (1994) Thyroid hormone metabolism in a transthyretin-null mouse strain. J Biol Chem 269:33135–33139

    CAS  PubMed  Google Scholar 

  • Palha JA, Fernandes R, de Escobar GM et al (2000) Transthyretin regulates thyroid hormone levels in the choroid plexus, but not in the brain parenchyma: study in a transthyretin null mouse model. Endocrinology 141:3267–3272

    CAS  PubMed  Google Scholar 

  • Palha J, Nissanov J, Fernandes R et al (2002) Thyroid hormone distribution in the mouse brain: the role of transthyretin. Neuroscience 113:837–847

    CAS  PubMed  Google Scholar 

  • Papineni S, Marty SM, Rasoulpour RJ et al (2015) Mode of action and human relevance of pronamide-induced rat thyroid tumors. Reg Toxicol Pharmacol 71:541–551

    CAS  Google Scholar 

  • Pardridge WM, Mietus LJ (1979) Influx of thyroid hormones into rat liver in vivo: differential availability of thyroxine and triiodothyronine bound by plasma proteins. J Clin Invest 66:367–374

    Google Scholar 

  • Parker SL, Tong T, Bolden S et al (1997) Cancer statistics. CA Cancer J Clin 47:5–27

    CAS  PubMed  Google Scholar 

  • Parmentier M, Libert F, Maenhaut C et al (1989) Molecular cloning of the thyrotropin receptor. Science 246(4937):1620–1622

    CAS  PubMed  Google Scholar 

  • Paul K (2014) Using adverse outcome pathway analysis to identify gaps in high-throughput screening for thyroid disruption. Bayer CropScience. https://ntp.niehs.nih.gov/iccvam/meetings/aop-wksp-2014/presentations/paul-508.pdf. Accessed 29 Oct 2017

  • Peeters RP, Kester MH, Wouters PJ et al (2005) Increased thyroxine sulfate levels in critically ill patients as a result of a decreased hepatic type I deiodinase activity. J Clin Endocrinol Metabol 90:6460–6465

    CAS  Google Scholar 

  • Pendergrast WJ, Milmore BK, Marcus SC (1961) Thyroid cancer and thyrotoxicosis in the United States: their relation to endemic goitre. J Chronic Dis 13:22–38

    CAS  PubMed  Google Scholar 

  • Peterson PA, Rask L, Ostberg L et al (1973) Studies on the transport and cellular distribution of vitamin A in normal and vitamin A-deficient rats with special reference to the vitamin A-binding plasma protein. J Biol Chem 248:4009–4022

    CAS  PubMed  Google Scholar 

  • Piersma AH, Verhoef A, te Biesebeek JD, Pieters MN, Slob W (2000) Developmental toxicity of butyl benzyl phthalate in the rat using a multiple dose study design. Reprod Toxicol 14:417–425

    CAS  PubMed  Google Scholar 

  • Power DM, Elias NP, Richardson SJ et al (2000) Evolution of the thyroid hormone-binding protein, transthyretin. Gen Comp Endocrinol 119:241–255

    CAS  PubMed  Google Scholar 

  • Price RJ, Burch R, Chatham LR et al (2020) An assay for screening xenobiotics for inhibition of rat thyroid gland peroxidase activity. Xenobiotica 50:318–322

    CAS  PubMed  Google Scholar 

  • Qatanani M, Zhang J, Moore DM (2005) Role of the constitutive androstane receptor in xenobiotic-induced thyroid hormone metabolism. Endocrinology 146:995–1002

    CAS  PubMed  Google Scholar 

  • Radominska-Pandya A, Ouzzine M, Fournel-Gigleux S et al (2005) Structure of UDP-glucuronosyltransferases in membranes. Methods Enzymol 400:116–147

    CAS  PubMed  Google Scholar 

  • Ramhøj L, Hass U, Gilbert ME et al (2020) Evaluating thyroid hormone disruption: investigations of long-term neurodevelopmental effects in rats after perinatal exposure to perfluorohexane sulfonate (PFHxS). Sci Rep 10:2672. https://doi.org/10.1038/s41598-020-59354-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Refetoff S (2000) Thyroid hormone serum transport proteins. [Updated 2015 Jun 7]. In: Feingold KR, Anawalt B, Boyce A et al (eds) Endotext [Internet]. South Dartmouth: MDText.com, Inc. https://www.ncbi.nlm.nih.gov/books/NBK285566/

  • Ren SG, Malozowski S, Simoni C et al (1988) Dose-response relationship between thyroid hormone and growth velocity in cynomolgus monkeys. J Clin Endocrinol Metab 66:1010–1013

    CAS  PubMed  Google Scholar 

  • Renehan AG, Tyson M, Egger M et al (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569–578

    PubMed  Google Scholar 

  • Riccabona G (1986) Thyroid cancer and other surgical problems in the areas of endemic goitre. In: Dunn JT, Pretell EA, Daza CH, Viteri FE (eds) Towards the eradication of endemic goitre, cretenism, and iodine deficiency. Pan American Health Organization, Washington DC, p 68

    Google Scholar 

  • Riccabona G (1987) Correlation of thyroid cancer with endemic goitre. In: Riccabona G (ed) Thyroid cancer, its epidemiology, clinical features and treatment. Springer, Berlin, pp 6–14

    Google Scholar 

  • Richardson SJ (2002) The evolution of transthyretin synthesis in vertebrate liver, in primitive eukaryotes and in bacteria. Clin Chem Lab Med 40:1191–1199

    CAS  PubMed  Google Scholar 

  • Richardson SJ (2007) Cell and molecular biology of transthyretin and thyroid hormones. Int Rev Cytol 258:137–193

    CAS  PubMed  Google Scholar 

  • Richardson SJ, Wettenhall REH, Schreiber G (1996) Evolution of transthyretin gene expression in the liver of Didelphis virginiana and other American marsupials. Endocrinology 137:3507–3512

    CAS  PubMed  Google Scholar 

  • Richardson VM, Ferguson SS, Sey YM et al (2014) In vitro metabolism of thyroxine by rat and human hepatocytes. Xenobiotica 44:391–403

    CAS  PubMed  Google Scholar 

  • Rinaldi S, Lise M, Clavel-Chapelon F et al (2012) Body size and risk of differentiated thyroid carcinomas: findings from the EPIC study. Int J Cancer 131:E1004–E1014

    CAS  PubMed  Google Scholar 

  • Robbins J (2000) Thyroid hormone transport proteins and the physiology of hormone binding. In: Braverman LE, Utiger RD (eds) Werner and Ingbar’s, the thyroid, 8th edn. Lippincott Williams & Wilkins, Philadelphia, pp 105–120

    Google Scholar 

  • Robbins J (2002) Transthyretin from discovery to now. Clin Chem Lab Med 40:1183–1190

    CAS  PubMed  Google Scholar 

  • Robbins J, Edelhoch H (1986) Peripheral hormone metabolism Hormone transport in blood. In: lngbar SH, Bravserman LE (eds) Werner's the thyroid, 5edn. Lippincott Press, Philadelphia, pp 116-127

  • Rosene ML, Wittmann G, Arrojo e Drigo R et al (2010) Inhibition of the type 2 iodothyronine deiodinase underlies the elevated plasma TSH associated with amiodarone treatment. Endocrinology 151:5961–5970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rouaze-Romet M, Savu L, Vranckx R et al (1992) Re-expression of thyroxine-binding globulin in post-weaning rats during protein or energy malnutrition. Acta Endocrinol (Cph) 127:441–448

    CAS  Google Scholar 

  • Rouquié D, Tinwell H, Blanck O et al (2014) Thyroid tumor formation in the male mouse induced by fluopyram is mediated by activation of hepatic CAR/PXR nuclear receptors. Reg Toxicol Pharmacol 70:673–680

    Google Scholar 

  • Rousset B, Dupuy C, Miot F et al (2000) Chapter 2 thyroid hormone synthesis and secretion. [Updated 2015 Sep 2]. In: De Groot LJ, Chrousos G, Dungan K (eds) Endotext [Internet]. MDText.com, Inc., South Dartmouth. https://www.ncbi.nlm.nih.gov/books/NBK285550/

  • Ruf J (2006) Structural and functional aspects of thyroid peroxidase. Arch Biochem Biophys 445:269–277

    CAS  PubMed  Google Scholar 

  • Russfield AB (1967) Pathology of the endocrine glands, ovary and testis of rats and mice. In: Cotchin E, Roe FJ (eds) Pathology of laboratory rats and mice. Blackwell Scientific Publications, Oxford, pp 391–403

    Google Scholar 

  • Sarne D (2000) Effects of the environment, chemicals and drugs on thyroid function. [Updated 2016 Sep 27]. In: De Groot LJ, Chrousos G, Dungan K et al (eds) Endotext [Internet]. MDText.com, Inc., South Dartmouth. https://www.ncbi.nlm.nih.gov/books/NBK285560/

  • Scanlon MF, Toft AD (2000) Regulation of thyrotropin secretion. In: Braverman LE, Utiger RD (eds) Werner and Ingbar’s, the thyroid, 8th edn. Lippincott Williams & Wilkins, Philadelphia, pp 234–253

    Google Scholar 

  • Schlenker EH, Hora M, Liu Y et al (2008) Effects of thyroidectomy, T4, and DITPA replacement on brain blood vessel density in adult rats. Am J Physiol Regul Integr Comp Physiol 294:R1504-1509

    CAS  PubMed  Google Scholar 

  • Schroder-van der Elst JP, Van der Heide D, Rokos H et al (1998) Synthetic flavonoids cross the placenta in the rat and are found in foetal brain. Am J Physiol 274:E253–E256

    CAS  PubMed  Google Scholar 

  • Schussler GC (2000) The thyroxine-binding proteins. Thyroid 10:141–149

    CAS  PubMed  Google Scholar 

  • Schuur AG, Legger FF, van Meeteren ME et al (1998) In vitro inhibition of thyroid hormone sulfation by hydroxylated metabolites of halogenated aromatic hydrocarbons. Chem Res Toxicol 11:1075–1081

    CAS  PubMed  Google Scholar 

  • Schwartz CE, Stevenson RE (2007) The MCT8 thyroid hormone transporter and Allan–Herndon–Dudley syndrome. Best practice and research. Clin Endocrinol Metabol 21:307–321

    CAS  Google Scholar 

  • Segni M (2000) Disorders of the thyroid gland in infancy, childhood and adolescence. [Updated 2017 Mar 18]. In: Feingold KR, Anawalt B, Boyce A et al (eds) Endotext [Internet]. MDText.com, Inc.: South Dartmouth. https://www.ncbi.nlm.nih.gov/books/NBK279032/

  • Seibert FB, Nelson JW (1942) Electrophoretic study of the blood protein response in tuberculosis. J Biol Chem 143:29–38

    CAS  Google Scholar 

  • Seoane LM, Carro E, Tovar S et al (2000) Regulation of in vivo TSH secretion by leptin. Reg Peptides 92:25–29

    CAS  Google Scholar 

  • Sharlin DS, Tighe D, Gilbert ME et al (2008) The balance between oligodendrocyte and astrocyte production in major white matter tracts is linearly related to serum total thyroxine. Endocrinology 149:2527–2536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shopsin B, Shenkman L, Blum M et al (1973) Iodine and lithium-induced hypothyroidis. Documentation of synergism. Am J Med 55:695–699

    CAS  PubMed  Google Scholar 

  • Siegel RD, Lee SL (1998) Toxic nodular goitre. Toxic adenoma and toxic multinodular goitre. Endocrinol Metabol Clin N Am 27:151–168

    CAS  Google Scholar 

  • Slob W, Moerbeek M, Rauniomaa E, Piersma AH (2005) A statistical evaluation of toxicity study designs for the estimation of the benchmark dose in continuous endpoints. Toxicol Sci 84(1):167–185 (Epub 2004 Oct 13)

    CAS  PubMed  Google Scholar 

  • Smith PF, Grossman SJ, Gerson RJ et al (1991) Studies on the mechanism of simvastatin-induced thyroid hypertrophy and follicular cell adenoma in the rat. Toxicol Pathol 19:197–205

    CAS  PubMed  Google Scholar 

  • Sorenson RL, and Belje TC (2014) Atlas of human histology. In: A Guide to microscopic structure of cells, tissues and organs, 3rd edn. University of Minnesota Bookstore, Minneapolis, pp 367

  • Sousa J, de Escobar GM, Oliveira P et al (2005) Transthyretin is not necessary for thyroid hormone metabolism in conditions of increased hormone demand. J Endocrinol 187:257–266

    CAS  PubMed  Google Scholar 

  • Surks MI, Sievert R (1995) Drugs and thyroid function. N Engl J Med 333:1688–1694

    CAS  PubMed  Google Scholar 

  • Sutherland RL, Brandon MR (1976) The thyroxine-binding properties of rat and rabbit serum proteins. Endocrinol 98:91–98

    CAS  Google Scholar 

  • Suttie A (2017) Boorman’s pathology of the rat. In: Reference and atlas, 2nd edn. Academic Press

  • Swarm RI, Roberts GKS, Levy AC et al (1973) Observations on the thyroid glands in rats following administration of sulphomethoxazole and trimethoprim. Toxicol Appl Pharmacol 24:351–363

    CAS  PubMed  Google Scholar 

  • Takayama S, Aihara K, Onodera T et al (1986) Anti-thyroid effects of propylthiouracil ans sulphamonomethoxine in rats and monkeys. Toxicol Appl Pharmacol 82:191–199

    CAS  PubMed  Google Scholar 

  • Tani Y, Mori Y, Miura Y et al (1994) Molecular cloning of the rat thyroxine-binding globulin gene and analysis of its promoter activity. Endocrinology 135:2731–2736

    CAS  PubMed  Google Scholar 

  • Tani Y, Maronpot RR, Foley JF et al (2004) Follicular epithelial cell hypertrophy induced by chronic oral administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin in female Harlan Sprague–Dawley rats. Toxicol Pathol 32:41–49

    CAS  PubMed  Google Scholar 

  • Tanjasiri P, Kozbur X, Florsheim WH (1976) Somatostatin in the physiologic feedback control of thyrotropin secretion. Life Sci 19:657–660

    CAS  PubMed  Google Scholar 

  • Teubner W, Meinl W, Florian S et al (2007) Identification and localization of soluble sulfotransferases in the human gastrointestinal tract. Biochem J 404:207–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas GA, Williams ED (1991) Evidence for and possible mechanisms of non-genotoxic carcinogenesis in the rodent thyroid. Mut Res 248:357–370

    CAS  Google Scholar 

  • Turyk ME, Anderson HA, Persky VW (2007) Relationships of thyroid hormones with polychlorinated Biphenyls, dioxins, furans, and DDE in adults. Environ Health Percept 115:1197–1203

    CAS  Google Scholar 

  • U.S. EPA (2016) Series 890 - endocrine disruptor screening program test guidelines. Series 890 - Endocrine Disruptor Screening Program Test Guidelines | Test Guidelines for Pesticides and Toxic Substances | US EPA. Accessed 10 Dec 2020

  • U.S. EPA. (1998) Assessment of thyroid follicular cell tumors. Washington, DC: EPA Document No. DC EPA/630/R-97/002. https://www.epa.gov/sites/production/files/2014-11/documents/thyroid.pdf. Accessed 21 Nov 2020

  • Van Der Haar F (2007) Goitre and other iodine deficiency disorders: a systematic review of epidemiological studies to deconstruct the complex web. Arch Med Res 38:586–587

    Google Scholar 

  • Vansell NR, Klaassen CD (2002) Increase in rat liver UDP glucuronosyltransferase mRNA by microsomal enzyme inducers that enhance thyroid hormone glucuronidation. Drug Metab Dispos 30:240–246

    CAS  PubMed  Google Scholar 

  • Verburg FA, Reiners C (2010) The association between multinodular goitre and thyroid cancer. Minerva Endocrinol 35:187–192

    CAS  PubMed  Google Scholar 

  • Vinken M, Kramer N, Allen TEH et al (2020) The use of adverse outcome pathways in the safety evaluation of food additives. Arch Toxicol 94:959–9966

    CAS  PubMed  Google Scholar 

  • Visser TJ (1998) In: Cooke BA, King RJB, Van der Molen HJ (eds) Hormones and their actions, part I. Elsevier Science Publishers, Amsterdam, pp 81–103

  • Visser TJ (1994) Role of sulfation in thyroid hormone metabolism. Chem Biol Int 92:293–303

    CAS  Google Scholar 

  • Visser TJ (1996) Pathways of thyroid hormone metabolism. Acta Med Austriaca 23:10–16

    CAS  PubMed  Google Scholar 

  • Visser TJ, Rutgers M, de Herder WW et al (1988) Hepatic metabolism, biliary clearance and enterohepatic circulation of thyroid hormone. Acta Med Austriaca 15(Suppl 1):37–39

    PubMed  Google Scholar 

  • Visser TJ, Kaptein E, van Raaij JA et al (1993a) Multiple UDP-glucuronyltransferases for the glucuronidation of thyroid hormone with preference for 3,3’,5’-triiodothyronine (reverse T3). FEBS Lett 315:65–68

    CAS  PubMed  Google Scholar 

  • Visser TJ, Kaptein E, van Toor H et al (1993b) Glucuronidation of thyroid hormone in rat liver: effects of in vivo treatment with microsomal enzyme inducers and in vitro assay conditions. Endocrinology 133:2177–2186

    CAS  PubMed  Google Scholar 

  • Visser WE, Friesema EC, Visser TJ (2011) Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol 25:1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Visser WE, Visser TJ, Peeters RP (2016) Metabolism of thyroid hormone. http://www.thyroidmanager.org/wp-content/uploads/chapters/metabolism-of-thyroid-hormone.pdf. Accessed 21 Oct 2017

  • Vranckx R, Rouaze M, Savu L et al (1990a) The hepatic biosynthesis of rat thyroxine binding globulin (TBG): demonstration, ontogenesis, and up-regulation in experimental hypothyroidism. Biochem Biophys Res Commun 167:317–322

    CAS  PubMed  Google Scholar 

  • Vranckx R, Savu L, Maya M et al (1990b) Characterization of a major development-regulated serum thyroxine-binding globulin in the euthyroid mouse. Biochem J 271:373–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner MS, Morimoto R, Dora JM et al (2003) Hypothyroidism induces type 2 iodothyronine deiodinase expression in mouse heart and testis. J Mol Endocrinol 31:541–550

    CAS  PubMed  Google Scholar 

  • Wang LQ, James MO (2006) Inhibition of sulfotransferases by xenobiotics. Curr Drug Metab 7:83–104

    PubMed  Google Scholar 

  • Wang LQ, Falany CN, James MO (2004) Triclosan as a substrate and inhibitor of 3’-phosphoadenosine 5’-phosphosulphate-sulphotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab Dispos 32:1162–1169

    CAS  PubMed  Google Scholar 

  • Watson ID (1980) Effects on thyroid functions of sulphonamide and trimethoprim combination drugs. Br. Med J 281:646–647

    PubMed  PubMed Central  Google Scholar 

  • WHO (2009) Principles and methods for the risk assessment of chemicals in food. ISBN: 9789241572408. https://www.who.int/publications/i/item/principles-and-methods-for-the-risk-assessment-of-chemicals-in-food Accessed 21 Nov 2020

  • Williams ED (1995) Mechanisms and pathogenesis of thyroid cancer in animals and man. Mut Res 333:123–129

    CAS  Google Scholar 

  • Wu KM, Farrelly JG (2006) Preclinical development of new drugs that enhance thyroid hormone metabolism and clearance: inadequacy of using rats as an animal model for predicting human risks in an IND and NDA. Am J Ther 132:141–144

    Google Scholar 

  • Wu SY, Green WL, Huang WS et al (2005) Alternate pathways of thyroid hormone metabolism. Thyroid 15:943–958

    CAS  PubMed  Google Scholar 

  • Yen PM (2003) Molecular basis of resistance to thyroid hormone. Trends Endocrinol Metab 14:327–333

    CAS  PubMed  Google Scholar 

  • York RG, Funk KA, Girard MF et al (2003) Oral (drinking water) developmental toxicity study of ammonium perchlorate in Sprague–Dawley rats. Int J Toxicol 22:453–464

    CAS  PubMed  Google Scholar 

  • Yu KO, Narayanan L, Mattie DR et al (2002) The pharmacokinetics of perchlorate and its effect on the hypothalamus-pituitary-thyroid axis in the male rat. Toxicol Appl Pharmacol 182:148–159

    CAS  PubMed  Google Scholar 

  • Żerek-Meleń G, Lewiński A, Pawlikowski M et al (1987) Influence of somatostatin and epidermal growth factor (EGF) on the proliferation of follicular cells in the organ-cultured rat thyroid. Res Exp Med 187:415–421

    Google Scholar 

  • Zhang Y, Guo GL, Han X et al (2008) Do polybrominated diphenyl ethers (PBDEs) increase the risk of thyroid cancer? Biosci Hypotheses 1:195–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann MB (2009) Iodine deficiency. Endo Rev 30:376–408

    CAS  Google Scholar 

  • Zimmermann MB, Galetti V (2015) Iodine intake as a risk factor for thyroid cancer: a comprehensive review of animal and human studies. Thyroid Res 8:8. https://doi.org/10.1186/s13044-015-0020-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author acknowledges the financial support of the European Crop Protection Agency in financially supporting the preparation of this manuscript.

Funding

The preparation of this manuscript was funded by the European Crop Protection Association.

Author information

Authors and Affiliations

Authors

Contributions

All three authors contributed equally to the preparation and review of the manuscript.

Corresponding author

Correspondence to John R. Foster.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foster, J.R., Tinwell, H. & Melching-Kollmuss, S. A review of species differences in the control of, and response to, chemical-induced thyroid hormone perturbations leading to thyroid cancer. Arch Toxicol 95, 807–836 (2021). https://doi.org/10.1007/s00204-020-02961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-020-02961-6

Keywords

Navigation