Skip to main content

Advertisement

Log in

Integration of transcriptomics, proteomics and metabolomics identifies biomarkers for pulmonary injury by polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, in rats

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Polyhexamethylene guanidine phosphate (PHMG-p) was used as a humidifier disinfectant in Korea. PHMG induced severe pulmonary fibrosis in Koreans. The objective of this study was to elucidate mechanism of pulmonary toxicity caused by PHMG-p in rats using multi-omics analysis. Wistar rats were intratracheally instilled with PHMG-p by single (1.5 mg/kg) administration or 4-week (0.1 mg/kg, 2 times/week) repeated administration. Histopathologic examination was performed with hematoxylin and eosin staining. Alveolar macrophage aggregation and granulomatous inflammation were observed in rats treated with single dose of PHMG-p. Pulmonary fibrosis, chronic inflammation, bronchiol–alveolar fibrosis, and metaplasia of squamous cell were observed in repeated dose group. Next generation sequencing (NGS) was performed for transcriptome profiling after mRNA isolation from bronchiol–alveoli. Bronchiol–alveoli proteomic profiling was performed using an Orbitrap Q-exactive mass spectrometer. Serum and urinary metabolites were determined using 1H-NMR. Among 418 differentially expressed genes (DEGs) and 67 differentially expressed proteins (DEPs), changes of 16 mRNA levels were significantly correlated with changes of their protein levels in both single and repeated dose groups. Remarkable biological processes represented by both DEGs and DEPs were defense response, inflammatory response, response to stress, and immune response. Arginase 1 (Arg1) and lipocalin 2 (Lcn2) were identified to be major regulators for PHMG-p-induced pulmonary toxicity based on merged analysis using DEGs and DEPs. In metabolomics study, 52 metabolites (VIP > 0.5) were determined in serum and urine of single and repeated-dose groups. Glutamate and choline were selected as major metabolites. They were found to be major factors affecting inflammatory response in association with DEGs and DEPs. Arg1 and Lcn2 were suggested to be major gene and protein related to pulmonary damage by PHMG-p while serum or urinary glutamate and choline were endogenous metabolites related to pulmonary damage by PHMG-p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ACCEH (Asian Citizen’s Center for Environment and Health) (2018) Report of damage of humidifier disinfectant until the end of December 2017. Report No. 302. Available from: https://eco-health.org/bbs/board.php?bo_table=sub02_04&wr_id=260&sca=2018%EB%85%84&page=2.

  • Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517:293–301

    Article  CAS  PubMed  Google Scholar 

  • Aslam B, Basit M, Nisar MA et al (2017) Proteomics: technologies and their applications. J Chromatogr Sci 55:182–196

    Article  CAS  PubMed  Google Scholar 

  • Benson RC, Hardy KA, Morris CR (2011) Arginase and arginine dysregulation in asthma. J Allergy (Cairo) 2011:736319

    Google Scholar 

  • Bernard K, Logsdon NJ, Benavides GA et al (2018) Glutaminolysis is required for transforming growth factor-β1-induced myofibroblast differentiation and activation. J Biol Chem 293:1218–1228

    Article  CAS  PubMed  Google Scholar 

  • Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations. Oxford University Press

  • Bumgarner R (2013) Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol Chapter 22:Unit 22.1

  • Byrne AJ, Maher TM, Lloyd CM (2016) Pulmonary macrophages: a new therapeutic pathway in fibrosing lung disease? Trends Mol Med 22:303–316

    Article  CAS  PubMed  Google Scholar 

  • Calimlioglu B, Karagoz K, Sevimoglu T et al (2015) Tissue-specific molecular biomarker signatures of type 2 diabetes: an integrative analysis of transcriptomics and protein-protein interaction data. OMICS 19:563–573

    Article  CAS  PubMed  Google Scholar 

  • Canesi L, Gallo G, Gavioli M et al (2002) (2002) Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Microsc Res Tech 57:469–476

    Article  PubMed  Google Scholar 

  • Chae S, Ahn, BY, Byun K et al. (2013) A systems approach for decoding mitochondrial retrograde signaling pathways. Sci Signal 6:rs4

  • Chen M, Lee HK, Moo L et al (2018) Common proteomic profiles of induced pluripotent stem cell-derived three-dimensional neurons and brain tissue from Alzheimer patients. J Proteomics 182:21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu AJ (1992) Bacterial lipopolysaccharide stimulates phospholipid synthesis and phosphatidylcholine breakdown in cultured human leukemia monocytic THP-1 cells. Int J Biochem 24:317–323

    Article  CAS  PubMed  Google Scholar 

  • Cowland JB, Sorensen OE, Sehested M et al (2003) Neutrophil gelatinaseassociated lipocalin is up-regulated in human epithelial cells by IL-1 beta, but not by TNF-alpha. J Immunol 171:6630–6639

    Article  CAS  PubMed  Google Scholar 

  • Cruzat V, Macedo Rogero M, Noel Keane K et al (2018) Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 10:1564

    Article  CAS  PubMed Central  Google Scholar 

  • Davies LC, Rice CM, Palmieri EM et al (2017) Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels. Nat Commun 8:2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira Souza VC, de Marco KC, Laure HJ et al (2016) A brain proteome profile in rats exposed to methylmercury or thimerosal (ethylmercury). J Toxicol Environ Health A 79:502–512

    Article  CAS  PubMed  Google Scholar 

  • Dittrich AM, Krokowski M, Meyer HA et al (2010) Lipocalin2 protects against airway inflammation and hyperresponsiveness in a murine model of allergic airway disease. Clin Exp Allergy 40:1689–1700

    Article  CAS  PubMed  Google Scholar 

  • Dittrich AM, Meyer HA, Hamelmann E (2013) The role of lipocalins in airway disease. Clin Exp Allergy 43:503–511

    Article  CAS  PubMed  Google Scholar 

  • Driscoll KE, Costa DL, Hatch G et al (2000) Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci 55(1):24–35

    Article  CAS  PubMed  Google Scholar 

  • Eagan TM, Damås JK, Ueland T et al (2010) Neutrophil gelatinase-associated lipocalin: a biomarker in COPD. Chest 138:888–895

    Article  PubMed  Google Scholar 

  • Flo TH, Smith KD, Sato S et al (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921

    Article  CAS  PubMed  Google Scholar 

  • Franciosi L, Postma DS, van den Berge M et al (2014) Susceptibility to COPD: differential proteomic profiling after acute smoking. PLoS One 9(7):e102037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedl A, Stoesz SP, Buckley P et al (1999) Neutrophil gelatinase-associated lipocalin in normal and neoplastic human tissues. Cell type-specific pattern of expression. Histochem J 31:433–441

    Article  CAS  PubMed  Google Scholar 

  • Galván-Peña S, O'Neill LA (2014) Metabolic reprograming in macrophage polarization. Front Immunol 5:420

    PubMed  PubMed Central  Google Scholar 

  • Geeraerts X, Bolli E, Fendt SM et al (2017) Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Front Immunol 8:289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh N, Dutta M, Singh B et al (2016) Transcriptomics, proteomics and metabolomics driven biomarker discovery in COPD: an update. Expert Rev Mol Diagn 16:897–913

    Article  CAS  PubMed  Google Scholar 

  • Grove RI, Allegretto NJ, Kiener PA et al (1990) Lipopolysaccharide (LPS) alters phosphatidylcholine metabolism in elicited peritoneal macrophages. J Leukoc Biol 48:38–42

    Article  CAS  PubMed  Google Scholar 

  • Hage DS, Anguizola JA, Bi C et al (2012) Pharmaceutical and biomedical applications of affinity chromatography: recent trends and developments. J Pharm Biomed Anal 69:93–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensley CT, Wasti AT, DeBerardinis RJ (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123:3678–3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hesse M, Modolell M, Flamme La et al (2001) Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of l-arginine metabolism. J Immunol 167:6533–6544

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Yang Y, Li X et al (2018) Multi-omics approach reveals distinct differences in left- and right-sided colon cancer. Mol Cancer Res 16:476–485

    Article  CAS  PubMed  Google Scholar 

  • Hwang D, Rust AG, Ramsey S et al (2005) A data integration methodology for systems biology. Proc Natl Acad Sci USA 102:17296–17301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa S, Matsumura K, Kitamura N et al (2019) Multi-omics analysis: Repeated exposure of a 3D bronchial tissue culture to whole-cigarette smoke. Toxicol In Vitro 54:251–262

    Article  CAS  PubMed  Google Scholar 

  • Jang HJ, Lee JD, Jeon HS et al (2018) Metabolic profiling of eccentric exercise-induced muscle damage in human urine. Toxicol Res 34:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha AK, Huang SC, Sergushichev A et al (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42:419–430

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Chi X, Zhang X et al (2016) Increased serum VDBP as a risk predictor for steroid resistance in asthma patients. Respir Med 114:111–116

    Article  PubMed  Google Scholar 

  • Jung J, Kim SH, Lee HS et al (2013) Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clin Exp Allergy 43:425–433

    Article  CAS  PubMed  Google Scholar 

  • Kang YP, Lee SB, Lee JM et al (2016) Metabolic profiling regarding pathogenesis of idiopathic pulmonary fibrosis. J Proteome Res 15:1717–1724

    Article  CAS  PubMed  Google Scholar 

  • KCDC (Korea Center for Disease Control and Prevention) (2011) Interim report of epidemiological investigation on lung injury with unknown cause in Korea. Public Health Weekly Report KCDC 4:817–832

    Google Scholar 

  • Keatings VM, Barnes PJ (1997) Granulocyte activation markers in induced sputum: comparison between chronic obstructive pulmonary disease, asthma, and normal subjects. Am J Respir Crit Care Med 155:449–453

    Article  CAS  PubMed  Google Scholar 

  • Kikutake C, Yahara K (2016) Identification of epigenetic biomarkers of lung adenocarcinoma through multi-omics data analysis. PLoS ONE 11:e0152918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilk K, Aug A, Ottas A et al (2018) Phenotyping of chronic obstructive pulmonary disease based on the integration of metabolomes and clinical Characteristics. Int J Mol Sci 19(3):666

    Article  CAS  PubMed Central  Google Scholar 

  • Kim JS, Lee B, Hwang IC et al (2010) An automatic video instillator for intratracheal instillation in the rat. Lab Anim 44:20–24

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Ryu SH, Kim S et al (2013) Pattern recognition analysis for hepatotoxicity induced by acetaminophen using plasma and urinary 1H NMR-based metabolomics in humans. Anal Chem 85:11326–11334

    Article  CAS  PubMed  Google Scholar 

  • Kim HR, Hwang GW, Naganuma A et al (2016a) Adverse health effects of humidifier disinfectants in Korea: lung toxicity of polyhexamethylene guanidine phosphate. J Toxicol Sci 41:711–717

    Article  CAS  PubMed  Google Scholar 

  • Kim HR, Lee KH, Park CW et al (2016b) Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses. Arch Toxicol 90:617–632

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Kim SH, Jeon D et al (2018a) Low-dose cadmium exposure exacerbates polyhexamethylene guanidine-induced lung fibrosis in mice. J Toxicol Environ Health A 81:384–396

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Kim SH, Jeon D et al (2018b) Changes in expression of cytokines in polyhexamethylene guanidine-induced lung fibrosis in mice: Comparison of bleomycin-induced lung fibrosis. Toxicology 393:185–192

    Article  CAS  PubMed  Google Scholar 

  • Kjeldsen L, Cowland JB, Borregaard N (2000) Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta 1482:272–283

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova YI (2004) Physicochemical aspects of metal corrosion inhibition in aqueous solutions. Russ Chem Rev 73:75–87

    Article  Google Scholar 

  • Laguna TA, Reilly CS, Williams CB et al (2015) Metabolomics analysis identifies novel plasma biomarkers of cystic fibrosis pulmonary exacerbation. Pediatr Pulmonol 50:869–877

    Article  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Jang AS, Park JS et al (2013) Elevation of S100 calcium binding protein A9 in sputum of neutrophilic inflammation in severe uncontrolled asthma. Ann Allergy Asthma Immunol 111:268.e1–275.e1

    Google Scholar 

  • Lee JU, Cheong HS, Shim EY et al (2017) Gene profile of fibroblasts identify relation of CCL8 with idiopathic pulmonary fibrosis. Respir Res 18:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PS, Wang H, Li X et al (2017) α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 18:985–994

    Article  CAS  PubMed  Google Scholar 

  • Lowe R, Shirley N, Bleackley M et al (2017) Transcriptomics technologies. PLoS Comput Biol 13:e1005457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Article  Google Scholar 

  • McClay JL, Adkins DE, Isern NG et al (2010) 1H nuclear magnetic resonance metabolomics analysis identifies novel urinary biomarkers for lung function. J Proteome Res 9:3083–3090

    Article  CAS  PubMed  Google Scholar 

  • McGeachie MJ, Dahlin A, Qiu W et al (2015) The metabolomics of asthma control: a promising link between genetics and disease. Immun Inflamm Dis 3:224–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie AN, Spits H, Eberl G (2014) Innate lymphoid cells in inflammation and immunity. Immunity 41:366–374

    Article  CAS  PubMed  Google Scholar 

  • Misharin AV, Morales-Nebreda L, Reyfman PA et al (2017) Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med 214:2387–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misson P, van den Brûle S, Barbarin V et al (2004) Markers of macrophage differentiation in experimental silicosis. J Leukoc Biol 76:926–932

    Article  CAS  PubMed  Google Scholar 

  • Mokou M, Lygirou V, Vlahou A et al (2017) Proteomics in cardiovascular disease: recent progress and clinical implication and implementation. Expert Rev Proteomics 14:117–136

    Article  CAS  PubMed  Google Scholar 

  • Monticelli LA, Buck MD, Flamar AL et al (2016) Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nat Immunol 17:656–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora AL, Torres-González E, Rojas M et al (2006) Activation of alveolar macrophages via the alternative pathway in herpesvirus-induced lung fibrosis. Am J Respir Cell Mol Biol 35:466–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller G, Kramer A (2005) Effect of selected wound antiseptics on adult articular cartilage (bovine sesamoid bone) in the presence of Escherichia coli and Staphylococcus aureus. J Orthop Res 23:127–133

    Article  CAS  PubMed  Google Scholar 

  • Murray PJ, Allen JE, Biswas SK et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naz S, Kolmert J, Yang M et al (2017) Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD. Eur Respir J 49(6):1602322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NICNAS (National Industrial Chemicals Notification and Assessment Scheme) (2003) File No LTD/1021: Full public report: Polyhexamethylene guanidine phosphate. Sydney NSW Australia available at: www.nicnas.gov.au.

  • Nobakht M, Gh BF, Aliannejad R, Rezaei-Tavirani M et al (2015) The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers 20:5–16

    Article  CAS  Google Scholar 

  • O’Neill LA, Pearce EJ (2016) Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213:15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oulé MK, Azinwi R, Bernier AM et al (2008) Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight methicillin-resistant Staphylococcus aureus and nosocomial infections. J Med Microbiol 57:1523–1528

    Article  PubMed  Google Scholar 

  • Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277:30409–30412

    Article  CAS  PubMed  Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Article  CAS  PubMed  Google Scholar 

  • Piétu G, Mariage-Samson R, Fayein NA et al (1999) The Genexpress IMAGE knowledge base of the human brain transcriptome: a prototype integrated resource for functional and computational genomics. Genome Res 9:195–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Plaisier SB, Taschereau R, Wong JA et al (2010) Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res 38:e169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provan F, Nilsen MM, Larssen E et al (2016) An evaluation of coral lophelia pertusa mucus as an analytical matrix for environmental monitoring: A preliminary proteomic study. J Toxicol Environ Health A 79:647–657

    Article  CAS  PubMed  Google Scholar 

  • Rath M, Müller I, Kropf P et al (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raval CM, Lee PJ (2010) Heme oxygenase-1 in lung disease. Curr Drug Targets 11:1532–1540

    Article  CAS  PubMed  Google Scholar 

  • Reinke SN, Gallart-Ayala H, Gómez C et al (2017) Metabolomics analysis identifies different metabotypes of asthma severity. Eur Respir J. https://doi.org/10.1183/13993003.01740-2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts MJ, Schirra H, Lavin MF et al (2014) NMR-based metabolomics: global analysis of metabolites to address problems in prostate cancer. Cervical, Breast and Prostate Cancer. Tokwawan, Kowloon, Hong Kong. iConcept Press.1–43

  • Rodes C, Smith T, Crouse R et al (1990) Measurements of the size distribution of aerosols produced by ultrasonic humidification. Aerosol Sci Tech 13:220–229

    Article  Google Scholar 

  • Ryter SW, Choi AM (2005) Heme oxygenase-1: redox regulation of a stress protein in lung and cell culture models. Antioxid Redox Signal 7:80–91

    Article  CAS  PubMed  Google Scholar 

  • Ryu SH, Kim JW, Yoon D et al (2018) Serum and urine toxicometabolomics following gentamicin-induced nephrotoxicity in male Sprague-Dawley rats. J Toxicol Environ Health A 81:408–420

    Article  CAS  PubMed  Google Scholar 

  • Ryu SH, Lee JD, Kim JW et al (2019) 1H NMR toxicometabolomics following cisplatin-induced nephrotoxicity in male rats. J Toxicol Sci 44:57–71

    Article  PubMed  Google Scholar 

  • Sager M, Yeat NC, Pajaro-Van der Stadt S et al (2015) Transcriptomics in cancer diagnostics: developments in technology, clinical research and commercialization. Expert Rev Mol Diagn 15:1589–1603

    Article  CAS  PubMed  Google Scholar 

  • Saude EJ, Obiefuna IP, Somorjai RL et al (2009) Metabolomic biomarkers in a model of asthma exacerbation: urine nuclear magnetic resonance. Am J Respir Crit Care Med 179:25–34

    Article  CAS  PubMed  Google Scholar 

  • Saude EJ, Skappak CD, Regush S et al (2011) Metabolomic profiling of asthma: diagnostic utility of urine nuclear magnetic resonance spectroscopy. J Allergy Clin Immunol 127:757–764

    Article  CAS  PubMed  Google Scholar 

  • Schnabel RB, Baccarelli A, Lin H et al (2012) Next steps in cardiovascular disease genomic research–sequencing, epigenetics, and transcriptomics. Clin Chem 58:113–126

    Article  CAS  PubMed  Google Scholar 

  • Smyth MS, Martin JH (2000) x ray crystallography. Mol Pathol 53:8–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snider SA, Margison KD, Ghorbani P et al (2018) Choline transport links macrophage phospholipid metabolism and inflammation. J Biol Chem 293:11600–11611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snowden S, Dahlén SE, Wheelock CE (2012) Application of metabolomics approaches to the study of respiratory diseases. Bioanalysis 4:2265–2290

    Article  CAS  PubMed  Google Scholar 

  • Song E, Ouyang N, Hörbelt M et al (2000) Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibro-blasts. Cell Immunol 204:19–28

    Article  CAS  PubMed  Google Scholar 

  • Song JA, Park HJ, Yang MJ et al (2014) Polyhexamethylene guanidine phosphate induces severe lung inflammation, fibrosis, and thymic atrophy. Food Chem Toxicol 69:267–275

    Article  CAS  PubMed  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Louie MC, Vannella KM et al (2011) New concepts of IL-10-induced lung fibrosis: fibrocyte recruitment and M(2) activation in a CCL2/CCR2 axis. Am J Physiol Lung Cell Mol Physiol 300:L341–L353

    Article  CAS  PubMed  Google Scholar 

  • Tzouvelekis A, Herazo-Maya JD, Slade M et al (2017) Validation of the prognostic value of MMP-7 in idiopathic pulmonary fibrosis. Respirology 22:486–493

    Article  PubMed  Google Scholar 

  • Ubhi BK, Riley JH, Shaw PA et al (2012a) Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur Respir J 40:345–355

    Article  CAS  PubMed  Google Scholar 

  • Ubhi BK, Cheng KK, Dong J et al (2012b) Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD. Mol Biosyst 8:3125–3133

    Article  CAS  PubMed  Google Scholar 

  • Vasaikar SV, Straub P, Wang J et al (2018) LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res 46:D956–D963

    Article  CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Zhou W et al (1997) Characterization of the yeast transcriptome. Cell 88:243–251

    Article  CAS  PubMed  Google Scholar 

  • Voedisch B, Thie H (2010) Size exclusion chromatography. In Antibody Engineering Springer 607–612

  • Vuga LJ, Tedrow JR, Pandit KV et al (2014) C-X-C motif chemokine 13 (CXCL13) is a prognostic biomarker of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 189:966–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Tang Liu Y et al (2013) Metabonomic profiling of serum and urine by 1H NMR based spectroscopy discriminates patients with chronic obstructive pulmonary disease and healthy individuals. PLoS ONE 8:e65675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Yu XF, OUYang N et al (2019) Multi-platform analysis of methylation-regulated genes in human lung adenocarcinoma. J Toxicol Environ Health A 82:37–45

    Article  CAS  PubMed  Google Scholar 

  • Wiese S, Reidegeld KA, Meyer HE et al (2007) Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 7:340–350

    Article  PubMed  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA et al (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Xia B, Wang W et al (2017) A comprehensive analysis of metabolomics and transcriptomics in cervical cancer. Sci Rep 7:43353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zdzisińska B, Żurek A, Kandefer-Szerszeń M (2017) Alpha-Ketoglutarate as a molecule with pleiotropic activity: well-known and novel possibilities of therapeutic use. Arch Immunol Ther Exp (Warsz) 65:21–36

    Article  CAS  Google Scholar 

  • Zhao P, Elks CM, Stephens JM (2014) The induction of lipocalin-2 protein expression in vivo and in vitro. J BiolChem 289:5960–5969

    CAS  Google Scholar 

  • Zhao YD, Yin L, Archer S et al (2017) Metabolic heterogeneity of idiopathic pulmonary fibrosis: a metabolomic study. BMJ Open Respir Res 4(1):e000183

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Dennery PA, Yao H (2018) Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 314:L544–L554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was support by a Grant (2017001360001) from Korea Environmental Industry and Technology Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyu-Bong Kim or Byung-Mu Lee.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Supplementary file2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.D., Kim, H.Y., Kang, K. et al. Integration of transcriptomics, proteomics and metabolomics identifies biomarkers for pulmonary injury by polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, in rats. Arch Toxicol 94, 887–909 (2020). https://doi.org/10.1007/s00204-020-02657-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-020-02657-x

Keywords

Navigation