Skip to main content

Advertisement

Log in

Metabolism and genotoxicity of polycyclic aromatic hydrocarbons in human skin explants: mixture effects and modulation by sunlight

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cutaneous exposure to carcinogenic polycyclic aromatic hydrocarbons (PAH) occurs frequently in the industrialized workplace. In the present study, we addressed this topic in a series of experiments using human skin explants and organic extracts of relevant industrial products. PAH mixtures were applied topically in volumes containing either 10 or 1 nmol B[a]P. We first observed that although mixtures were very efficient at inducing expression of CYP450 1A1, 1A2, and 1B1, formation of adducts of PAH metabolites to DNA, like those of benzo[a]pyrene diol epoxide (BPDE), was drastically reduced as the complexity of the surrounding matrix increased. Interestingly, observation of a nonlinear, dose-dependent response with the least complex mixture suggested the existence of a threshold for this inhibitory effect. We then investigated the impact of simulated sunlight (SSL) on the effects of PAH in skin. SSL was found to decrease the expression of CYP450 genes when applied either after or more efficiently before PAH treatment. Accordingly, the level of DNA-BPDE adducts was reduced in skin samples exposed to both PAH and SSL. The main conclusion of our work is that both increasing chemical complexity of the mixtures and co-exposure to UV radiation decreased the production of adducts between DNA and PAH metabolites. Such results must be taken into account in risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abedin Z, Sen S, Field J (2012) Aldo-keto reductases protect lung adenocarcinoma cells from the acute toxicity of B[a]P-7,8-trans-dihydrodiol. Chem Res Toxicol 25:113–121

    CAS  PubMed  Google Scholar 

  • Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adduct and mechanism of action. Environ Mol Mutagen 45:106–114

    CAS  PubMed  Google Scholar 

  • Bickers DR, Mukhtar H, Dutta-Choudhury T, Marcelo CL, Voorhees JJ (1984) Aryl hydrocarbon hydroxylase, epoxide hydrolase, and benzo[a]pyrene metabolism in human epidermis: comparative studies in normal subjects and patients with psoriasis. J Investig Dermatol 83:51–56

    CAS  PubMed  Google Scholar 

  • Binkova B, Sram RJ (2004) The genotoxic effect of carcinogenic PAHs, their artificial and environmental mixtures (EOM) on human diploid lung fibroblasts. Mutat Res 547:109–121

    CAS  PubMed  Google Scholar 

  • Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8:444–472

    CAS  PubMed  Google Scholar 

  • Bourgart E, Persoons R, Marques M et al (2019) Influence of exposure dose, complex mixture and ultraviolet radiation on skin absorption and bioactivation of polycyclic aromatic hydrocarbons ex vivo. Arch Toxicol 93:2165–2184

    CAS  PubMed  Google Scholar 

  • Brinkmann J, Stolpmann K, Trappe S et al (2013) Metabolically competent human skin models: activation and genotoxicity of benzo a pyrene. Toxicol Sci 131:351–359

    CAS  PubMed  Google Scholar 

  • Costa C, Catania S, De Pasquale R, Stancanelli R, Scribano GM, Melchini A (2010) Exposure of human skin to benzo[a]pyrene: role of CYP1A1 and aryl hydrocarbon receptor in oxidative stress generation. Toxicology 271:83–86

    CAS  PubMed  Google Scholar 

  • Courter LA, Luch A, Musafia-Jeknic T et al (2008) The influence of diesel exhaust on polycyclic aromatic hydrocarbon-induced DNA damage, gene expression, and tumor initiation in Sencar mice in vivo. Cancer Lett 265:135–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crallan RA, Ingham E, Routledge MN (2005) Wavelength dependent responses of primary human keratinocytes to combined treatment with benzo[a]pyrene and UV light. Mutagenesis 20:305–310

    CAS  PubMed  Google Scholar 

  • Dankovic DA, Wright CW, Zangar RC, Springer DL (1989) Complex mixture effects on the dermal absorption of benzo a pyrene and other polycyclic aromatic-hydrocarbons from mouse skin. J Appl Toxicol 9:239–244

    CAS  PubMed  Google Scholar 

  • Darwiche N, Ryscavage A, Perez-Lorenzo R et al (2007) Expression profile of skin papillomas with high cancer risk displays a unique genetic signature that clusters with squamous cell carcinomas and predicts risk for malignant conversion. Oncogene 26:6885–6895

    CAS  PubMed  Google Scholar 

  • Deschamps F, Barouh M, Deslee G, Prevost A, Munck J-N (2006) Estimates of work-related cancers in workers exposed to carcinogens. Occup Med 56:204–209

    Google Scholar 

  • Dickel H, Blome O, Dickel B, Bruckner T, Stockfleth E, Soemantri SP (2016) Occupational syncarcinogenesis in the skin—combined effects of two carcinogens from the German occupational disease list. J Dtsch Dermatol Ges 14:1284–1296

    PubMed  Google Scholar 

  • Forster K, Preuss R, Rossbach B, Bruning T, Angerer J, Simon P (2008) 3-Hydroxybenzo[a]pyrene in the urine of workers with occupational exposure to polycyclic aromatic hydrocarbons in different industries. Occup Environ Med 65:224–229

    CAS  PubMed  Google Scholar 

  • Fritsche E, Schafer C, Calles C et al (2007) Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc Natl Acad Sci USA 104:8851–8856

    CAS  PubMed  Google Scholar 

  • Fustinoni S, Campo L, Cirla PE et al (2010) Dermal exposure to polycyclic aromatic hydrocarbons in asphalt workers. Occup Environ Med 67:456–463

    CAS  PubMed  Google Scholar 

  • Gajecka M, Rydzanicz M, Jaskula-Sztul R, Kujawski M, Szyfter W, Szyfter K (2005) CYP1A1, CYP2D6, CYP2E1, NAT2, GSTM1 and GSTT1 polymorphisms or their combinations are associated with the increased risk of the laryngeal squamous cell carcinoma. Mutat Res 574:112–123

    CAS  PubMed  Google Scholar 

  • Genies C, Maitre A, Lefebvre E, Jullien A, Chopard-Lallier M, Douki T (2013) The extreme variety of genotoxic response to benzo[a]pyrene in three different human cell lines from three different organs. PLoS ONE 8:e78356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Genies C, Jullien A, Lefebvre E, Revol M, Maitre A, Douki T (2016) Inhibition of the formation of benzo[a]pyrene adducts to DNA in A549 lung cells exposed to mixtures of polycyclic aromatic hydrocarbons. Toxicol In Vitro 35:1–10

    CAS  PubMed  Google Scholar 

  • Godschalk RWL, Ostertag JU, Moonen EJC, Neumann HAM, Kleinjans JCS, van Schooten FJ (1998) Aromatic DNA adducts in human white blood cells and skin after dermal application of coal tar. Cancer Epidemiol Biomark Prev 7:767–773

    CAS  Google Scholar 

  • He ZN, Duan HW, Zhang BA et al (2015) CpG site-specific RASSF1a hypermethylation is associated with occupational PAH exposure and genomic instability. Toxicol Res 4:848–857

    CAS  Google Scholar 

  • Herbert R, Marcus M, Wolff MS et al (1990) Detection of adducts of deoxyribonucleic acid in white blood cells of roofers by 32P-postlabeling. Relationship of adduct levels to measures of exposure to polycyclic aromatic hydrocarbons. Scand J Work Environ Health 16:135–143

    CAS  PubMed  Google Scholar 

  • Hopf NB, Spring P, Hirt-Burri N et al (2018) Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S). Toxicol Lett 287:122–130

    CAS  PubMed  Google Scholar 

  • Hu JJ, Yu YX (2019) Epigenetic response profiles into environmental epigenotoxicant screening and health risk assessment: a critical review. Chemosphere 226:259–272

    CAS  PubMed  Google Scholar 

  • Hughes NC, Phillips DH (1993) 32P-postlabelling analysis of the covalent binding of benzo[ghi]perylene to DNA in vivo and in vitro. Carcinogenesis 14:127–133

    CAS  PubMed  Google Scholar 

  • IARC (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures, vol 92. IARC, Lyon

    Google Scholar 

  • Jacques C, Perdu E, Duplan H et al (2010) Disposition and biotransformation of 14C-Benzo(a)pyrene in a pig ear skin model: ex vivo and in vitro approaches. Toxicol Lett 199:22–33

    CAS  PubMed  Google Scholar 

  • Jarvis IWH, Bergvall C, Bottai M, Westerholm R, Stenius U, Dreij K (2013) Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter. Toxicol Appl Pharmacol 266:408–418

    CAS  PubMed  Google Scholar 

  • Jarvis IWH, Dreij K, Mattsson A, Jernstrom B, Stenius U (2014) Interactions between polycyclic aromatic hydrocarbons in complex mixtures and implications for cancer risk assessment. Toxicology 321:27–39

    CAS  PubMed  Google Scholar 

  • Jeffrey AM, Weinstein IB, Jennette KW et al (1977) Structures of benzo(a)pyrene–nucleic acid adducts formed in human and bovine bronchial explants. Nature 269:348–350

    CAS  PubMed  Google Scholar 

  • Liu YL, Li XJ, Zhang B et al (2019) CYP1A1 methylation mediates the effect of smoking and occupational polycyclic aromatic hydrocarbons co-exposure on oxidative DNA damage among Chinese coke-oven workers. Environ Health 18:69

    PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    CAS  Google Scholar 

  • Marie C, Maître A, Douki T et al (2008) Influence of the metabolic properties of human cells on the kinetic of formation of the major benzo[a]pyrene DNA adducts. J Appl Toxicol 28:579–590

    CAS  PubMed  Google Scholar 

  • Marin YE, Seiberg M, Lin CB (2009) Aldo-keto reductase 1C subfamily genes in skin are UV-inducible: possible role in keratinocytes survival. Exp Dermatol 18:611–618

    CAS  PubMed  Google Scholar 

  • Marston CP, Pereira C, Ferguson J et al (2001) Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on the tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis. Carcinogenesis 22:1077–1086

    CAS  PubMed  Google Scholar 

  • Mauthe RJ, Cook VM, Coffing SL, Baird WM (1995) Exposure of mammalian cell cultures to benzo[a]pyrene and light results in oxidative DNA damage as measured by 8-hydroxydeoxyguanosine formation. Carcinogenesis 16:133–137

    CAS  PubMed  Google Scholar 

  • Moody RP, Nadeau B, Chu I (1995) In-vivo and in-vitro dermal absorption of benzo[a]pyrene in rat, guinea-pig, human and tissue-cultured skin. J Dermatol Sci 9:48–58

    CAS  PubMed  Google Scholar 

  • Nair S, Kekatpure VD, Judson BL et al (2009) UVR exposure sensitizes keratinocytes to DNA adduct formation. Cancer Prev Res 2:895–902

    CAS  Google Scholar 

  • Ng KM, Chu I, Bronaugh RL, Franklin CA, Somers DA (1992) Percutaneous absorption and metabolism of pyrene, benzo[a]pyrene, and di(2-ethylhexyl) phthalate: comparison of in vitro and in vivo results in the hairless guinea pig. Toxicol Appl Pharmacol 115:216–223

    CAS  PubMed  Google Scholar 

  • Nisbet IC, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    CAS  PubMed  Google Scholar 

  • Olshan AF, Weissler MC, Watson MA, Bell DA (2000) GSTM1, GSTT1, GSTP1, CYP1A1, and NAT1 polymorphisms, tobacco use, and the risk of head and neck cancer. Cancer Epidemiol Biomark Prev 9:185–191

    CAS  Google Scholar 

  • Palackal NT, Lee SH, Harvey RG, Blair IA, Penning TM (2002) Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells. J Biol Chem 277:24799–24808

    CAS  PubMed  Google Scholar 

  • Park JH, Mangal D, Frey AJ, Harvey RG, Blair IA, Penning TM (2009) Aryl hydrocarbon receptor facilitates DNA strand breaks and 8-oxo-2'-deoxyguanosine formation by the aldo-keto reductase product benzo[a]pyrene-7,8-dione. J Biol Chem 284:29725–29734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peltonen K, Dipple A (1995) Polycyclic aromatic hydrocarbons: chemistry of DNA adduct formation. J Occup Environ Med 37:52–58

    CAS  PubMed  Google Scholar 

  • Pukkala E, Martinsen JI, Weiderpass E et al (2014) Cancer incidence among firefighters: 45 years of follow-up in five Nordic countries. Occup Environ Med 71:398–404

    PubMed  Google Scholar 

  • Pushparajah DS, Ioannides C (2018) Antagonistic and synergistic interactions during the binding of binary mixtures of polycyclic aromatic hydrocarbons to the aryl hydrocarbon receptor. Toxicol In Vitro 50:54–61

    CAS  PubMed  Google Scholar 

  • Rannug A, Fritsche E (2006) The aryl hydrocarbon receptor and light. Biol Chem 387:1149–1157

    CAS  PubMed  Google Scholar 

  • Rice JE, Hosted TJ Jr, Lavoie EJ (1984) Fluoranthene and pyrene enhance benzo[a]pyrene–DNA adduct formation in vivo in mouse skin. Cancer Lett 24:327–333

    CAS  PubMed  Google Scholar 

  • Roelofzen JHJ, Aben KKH, Van Der Valk PGM, Van Houtum JLM, Van De Kerkhof PCM, Kiemeney L (2007) Coal tar in dermatology. J Dermatol Treat 18:329–334

    CAS  Google Scholar 

  • Roelofzen JHJ, van der Valk PGM, Godschalk R et al (2012) DNA adducts in skin biopsies and 1-hydroxypyrene in urine of psoriasis patients and healthy volunteers following treatment with coal tar. Toxicol Lett 213:39–44

    CAS  PubMed  Google Scholar 

  • Safe S (1990) Polychlorinated-biphenyls (PCBS), dibenzo-para-dioxins (PCDDS), dibenzofurans (PCDFS), and related-compounds - environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFS). Crit Rev Toxicol 21:51–88

    CAS  PubMed  Google Scholar 

  • Saladi R, Austin L, Gao D et al (2003) The combination of benzo[a]pyrene and ultraviolet A causes an in vivo time-related accumulation of DNA damage in mouse skin. Photochem Photobiol 77:413–419

    CAS  PubMed  Google Scholar 

  • Sartorelli P, Cenni A, Matteucci G, Montomoli L, Novelli MT, Palmi S (1999) Dermal exposure assessment of polycyclic aromatic hydrocarbons: in vitro percutaneous penetration from lubricating oil. Int Arch Occup Environ Health 72:528–532

    CAS  PubMed  Google Scholar 

  • Scarselli A, Corfiati M, Di Marzio D, Marinaccio A, Iavicoli S (2018) Gender differences in occupational exposure to carcinogens among Italian workers. BMC Public Health 18:413

    PubMed  PubMed Central  Google Scholar 

  • Sevastyanova O, Binkova B, Topinka J et al (2007) In vitro genotoxicity of PAH mixtures and organic extract from urban air particles: part II: human cell lines. Mutat Res 620:123–134

    CAS  PubMed  Google Scholar 

  • Shimada T, Fujii-Kuriyama Y (2004) Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci 95:1–6

    CAS  PubMed  Google Scholar 

  • Shimada T, Murayama N, Okada K, Funae Y, Yamazaki H, Guengerich FP (2007) Different mechanisms for inhibition of human cytochromes P450 1A1, 1A2, and 1B1 by polycyclic aromatic inhibitors. Chem Res Toxicol 20:489–496

    CAS  PubMed  Google Scholar 

  • Shimada T, Murayama N, Tanaka K et al (2008) Interaction of polycyclic aromatic hydrocarbons with human cytochrome P450 1B1 in inhibiting catalytic activity. Chem Res Toxicol 21:2313–2323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siddens LK, Larkin A, Krueger SK et al (2012) Polycyclic aromatic hydrocarbons as skin carcinogens: Comparison of benzo[a]pyrene, dibenzo[def, p]chrysene and three environmental mixtures in the FVB/N mouse. Toxicol Appl Pharmacol 264:377–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smolarek TA, Baird WM, Fisher EP, DiGiovanni J (1987) Benzo(e)pyrene-induced alterations in the binding of benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene to DNA in Sencar mouse epidermis. Cancer Res 47:3701–3706

    CAS  PubMed  Google Scholar 

  • Soeur J, Belaidi JP, Chollet C et al (2017) Photo-pollution stress in skin: traces of pollutants (PAH and particulate matter) impair redox homeostasis in keratinocytes exposed to UVA1. J Dermatol Sci 86:162–169

    CAS  PubMed  Google Scholar 

  • Staal YCM, Van Herwijnen MHM, Pushparajah DS et al (2007) Modulation of gene expression and DNA-adduct formation in precision-cut liver slices exposed to polycyclic aromatic hydrocarbons of different carcinogenic potency. Mutagenesis 22:55–62

    CAS  PubMed  Google Scholar 

  • Staal YCM, Pushparajah DS, Van Herwijnen MHM et al (2008) Interactions between polycyclic aromatic hydrocarbons in binary mixtures: effects on gene expression and DNA adduct formation in precision-cut rat liver slices. Mutagenesis 23:491–499

    CAS  PubMed  Google Scholar 

  • Swanson HI (2004) Cytochrome P450 expression in human keratinocytes: an aryl hydrocarbon receptor perspective. Chem Biol Interact 149:69–79

    CAS  PubMed  Google Scholar 

  • Tarantini A, Maitre A, Lefebvre E et al (2009) Relative contribution of DNA strand breaks and DNA adducts to the genotoxicity of benzo[a]pyrene as a pure compound and in complex mixtures. Mutat Res 671:67–75

    CAS  PubMed  Google Scholar 

  • Tarantini A, Douki T, Personnaz MB, Besombes JL, Jafrezzo JL, Maitre A (2011a) Effect of the chemical composition of organic extracts from environmental and industrial atmospheric samples on the genotoxicity of polycyclic aromatic hydrocarbons mixtures. Toxicol Environ Chem 93:941–954

    CAS  Google Scholar 

  • Tarantini A, Maitre A, Lefebvre E, Marques M, Rajhi A, Douki T (2011b) Polycyclic aromatic hydrocarbons in binary mixtures modulate the efficiency of benzo[a]pyrene to form DNA adducts in human cells. Toxicology 279:36–44

    CAS  PubMed  Google Scholar 

  • Teranishi M, Toyooka T, Ohura T, Masuda S, Ibuki Y (2010) Benzo[a]pyrene exposed to solar-simulated light inhibits apoptosis and augments carcinogenicity. Chem Biol Interact 185:4–11

    CAS  PubMed  Google Scholar 

  • Toyooka T, Ibuki Y (2007) DNA damage induced by coexposure to PAHs and light. Environ Toxicol Pharmacol 23:256–263

    CAS  PubMed  Google Scholar 

  • Tsuji G, Takahara M, Uchi H et al (2011) An environmental contaminant, benzo(a)pyrene, induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling pathway. J Dermatol Sci 62:42–49

    CAS  PubMed  Google Scholar 

  • VanRooij JG, Bodelier-Bade MM, De Looff AJ, Dijkmans AP, Jongeneelen FJ (1992) Dermal exposure to polycyclic aromatic hydrocarbons among primary aluminium workers. Med Lav 83:519–529

    CAS  PubMed  Google Scholar 

  • VanRooij JG, Bodelier-Bade MM, Jongeneelen FJ (1993) Estimation of individual dermal and respiratory uptake of polycyclic aromatic hydrocarbons in 12 coke oven workers. Br J Ind Med 50:623–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villard PH, Sampol E, Elkaim JL et al (2002) Increase of CYP1B1 transcription in human keratinocytes and HaCaT cells after UV-B exposure. Toxicol Appl Pharmacol 178:137–143

    CAS  PubMed  Google Scholar 

  • von Koschembahr A, Youssef A, Beal D et al (2018) Solar simulated light exposure alters metabolization and genotoxicity induced by benzo[a] pyrene in human skin. Sci Rep. https://doi.org/10.1038/s41598-018-33031-8

    Article  Google Scholar 

  • Xia Q, Chiang HM, Yin JJ et al (2015) UVA photoirradiation of benzo[a]pyrene metabolites: induction of cytotoxicity, reactive oxygen species, and lipid peroxidation. Toxicol Ind Health 31:898–910

    CAS  PubMed  Google Scholar 

  • Youssef A, von Koschembahr A, Caillat S, Corre S, Galibert MD, Douki T (2018) 6-Formylindolo[3,2-b]carbazole (FICZ) is a very minor photoproduct of tryptophan at biologically relevant doses of UVB and simulated sunlight. Photochem Photobiol 95:237–243

    PubMed  Google Scholar 

  • Yu H, Xia Q, Yan J et al (2006) Photoirradiation of polycyclic aromatic hydrocarbons with UVA light—a pathway leading to the generation of reactive oxygen species, lipid peroxidation, and DNA damage. Int J Environ Res Public Health 3:348–354

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the team of the “Service de Chirurgie Plastique et Maxillo-faciale CHU Grenoble Alpes” for their help in skin sample collection. This work was supported by grants #ENV201411 and #ENV201604 from INSERM and Plan Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Douki.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Koschembahr, A., Youssef, A., Béal, D. et al. Metabolism and genotoxicity of polycyclic aromatic hydrocarbons in human skin explants: mixture effects and modulation by sunlight. Arch Toxicol 94, 495–507 (2020). https://doi.org/10.1007/s00204-019-02650-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02650-z

Keywords

Navigation