Adams TK, Capacio BR, Smith JR, Whalley CE, Korte WD (2004) The application of the fluoride reactivation process to the detection of sarin and soman nerve agent exposures in biological samples. Drug Chem Toxicol 27:77–91
CAS
Article
Google Scholar
Benschop HR, DeJon LPA (2001) Toxicokinetics of nerve agents. In: Somani SM, Romano JA (eds) Chemical warfare agents: toxicity at low levels. CRC Press, Boca Raton, pp 25–81
Google Scholar
Black RM, Read RW (2013) Biological markers of exposure to organophosphorus nerve agents. Arch Toxicol 87:421–437. https://doi.org/10.1007/s00204-012-1005-1
CAS
Article
PubMed
Google Scholar
De Bisschop HCJV, De Meerleer WAP, Willemsf JL (1987) Stereoselective phosphonylation of human serum proteins by soman. Biochem Pharmacol 36:3587–3591. https://doi.org/10.1016/0006-2952(87)90006-2
Article
PubMed
Google Scholar
Degenhardt CEAM, Pleijsier K, van der Schans MJ, Langenberg JP, Preston KE, Solano MI, Maggio VL, Barr JR (2004) Improvements of the fluoride reactivation method for the verification of nerve agent exposure. J Anal Toxicol 28:364–371. https://doi.org/10.1093/jat/28.5.364
CAS
Article
PubMed
Google Scholar
Ellison DH (2008) Handbook of chemical and biological warfare agents, 2nd edn. CRC Press, Boca Raton, p 8
Google Scholar
Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9
CAS
Article
PubMed
Google Scholar
Epstein J, Michel HO, Rosenblatt DH, Plapinger RE, Stephani RA, Cook E (1964a) Reactions of isopropyl methylphosphonofluoridate with substituted phenols. II. J Am Chem Soc 86:4959–4963. https://doi.org/10.1021/ja01076a043
CAS
Article
Google Scholar
Epstein J, Plapinger RE, Michel HO, Cable JR, Stephani RA, Hester RJ, Billington C, List GR (1964b) Reactions of isopropyl methylphosphonofluoridate with substituted phenols. I. J Am Chem Soc 86:3075–3084. https://doi.org/10.1021/ja01069a021
CAS
Article
Google Scholar
Fidder A, Hulst AG, Noort D, de Ruiter R, van der Schans MJ, Benschop HP, Langenberg JP (2002) Retrospective detection of exposure to organophosphorus anti-cholinesterases: mass spectrometric analysis of phosphylated human butyrylcholinesterase. Chem Res Toxicol 15:582–590. https://doi.org/10.1021/tx0101806
CAS
Article
PubMed
Google Scholar
Haigh JR, Lefkowitz LJ, Capacio BR, Doctor BP, Gordon RK (2008) Advantages of the WRAIR whole blood cholinesterase assay: comparative analysis to the micro-Ellman, Test-mate ChE (TM) and Michel (Delta pH) assays. Chem Biol Interact 175:417–420
CAS
Article
Google Scholar
Holland KE, Solano MI, Johnson RC, Maggio VL, Barr JR (2008) Modifications to the organophosphorus nerve agent-protein adduct refluoridation method for retrospective analysis of nerve agent exposures. J Anal Toxicol 32:116–124. https://doi.org/10.1093/jat/32.1.116
CAS
Article
PubMed
Google Scholar
Jakubowski EM, McGuire JM, Evans RA et al (2004) Quantitation of fluoride ion released sarin in red blood cell samples by gas chromatography-chemical ionization mass spectrometry using isotope dilution and large-volume injection. J Anal Toxicol 28:357–363. https://doi.org/10.1093/jat/28.5.357
CAS
Article
PubMed
Google Scholar
John H, van der Schans MJ, Koller M, Spruit HET, Worek F, Thiermann H, Noort D (2018) Fatal sarin poisoning in Syria 2013: forensic verification within an international laboratory network. Forensic Toxicol 36:61–71. https://doi.org/10.1007/s11419-017-0376-7
CAS
Article
PubMed
Google Scholar
Johnson CD, Russell RL (1975) A rapid, simple radiometric assay for cholinesterase, suitable for multiple determinations. Anal Biochem 64:229–238. https://doi.org/10.1016/0003-2697(75)90423-6
CAS
Article
PubMed
Google Scholar
Keijer JH, Wolring GZ (1969) Stereospecific aging of phosphonylated cholinesterases. Biochem Biophys Acta Enzymol 185:465–468. https://doi.org/10.1016/0005-2744(69)90441-0
CAS
Article
Google Scholar
Koller M, Becker C, Thiermann H, Worek F (2010) GC–MS and LC–MS analysis of nerve agents in body fluids: intra-laboratory verification test using spiked plasma and urine samples. J Chromatogr B 878:1226–1233. https://doi.org/10.1016/j.jchromb.2009.12.023
CAS
Article
Google Scholar
Lander F, Lings S (1991) Variation in plasma cholinesterase activity among greenhouse workers, fruitgrowers, and slaughtermen. Br J Ind Med 48:164–166. https://doi.org/10.1136/oem.48.3.164
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee JY, Lee YH (2014) Improvements to the fluoride reactivation method by simple organic extraction for retrospective detection of exposure to the organophosphorus nerve agents in human plasma. Int J Anal Mass Spectrom Chromatogr 2:65–76. https://doi.org/10.4236/ijamsc.2014.23007
Article
Google Scholar
Mach PM, Dhummakupt ES, Carmany DO, McBride EM, Busch MW, Demond PS, Rizzo GM, Hollinshead DE, Glaros T (2018) On-substrate derivatization for detection of highly volatile G-series chemical warfare agents via paper spray mass spectrometry. Rapid Commun Mass Spectrom 32:1979–1983
CAS
Article
Google Scholar
McGuire JM, Taylor IT, Byers CE, Jakubowski EM, Thomson SA (2008) Determination of VX-G analogue in red blood cells via gas chromatography-tandem mass spectrometry following an accidental exposure to VX. J Anal Toxicol 32:73–77
CAS
Article
Google Scholar
Myers DK (1952) Studies on cholinesterase. 7. Determination of the molar concentration of pseudo-cholinesterase in serum. Biochem J 51:303–311. https://doi.org/10.1042/bj0510303
CAS
Article
PubMed
PubMed Central
Google Scholar
Noort D, Benschop HP, Black RM (2002) Biomonitoring of exposure to chemical warfare agents: a review. Toxicol Appl Pharmacol 184:116–126. https://doi.org/10.1006/taap.2002.9449
CAS
Article
PubMed
Google Scholar
Polhuijs M, Langenberg JP, Benschop HP (1997) New method for retrospective detection of exposure to organophosphorus anticholinesterases: application to alleged sarin victims of Japanese terrorists. Toxicol Appl Pharmacol 146:156–161. https://doi.org/10.1006/taap.1997.8243
CAS
Article
PubMed
Google Scholar
Renner JA, Dabisch PA, Evans RA, McGuire JM, Totura AL, Jakubowski EM, Thomson SA (2008) Validation and application of a GC-MS method for determining soman concentration in rat plasma following low-level vapor exposure. J Anal Toxicol 32:92–98. https://doi.org/10.1093/jat/32.1.92
CAS
Article
PubMed
Google Scholar
Seto Y, Kanamori-Kataoka M, Komano A, Nagoya T, Sasano R, Matsuo S (2019) Gas chromatography-mass spectrometry with spiral large-volume injection for determination of fluoridated phosphonates produced by fluoride-mediated regeneration of nerve agent adduct in human serum. J Chromatogr A 1583:108–116. https://doi.org/10.1016/j.chroma.2018.11.011
CAS
Article
PubMed
Google Scholar
Solano MI, Thomas JD, Taylor JT, McGuire JM, Jakubowski EM, Thomson SA, Maggio VL, Holland KE, Smith JR, Capacio B, Woolfitt AR, Ashley DL, Barr JR (2008) Quantification of nerve agent VX-butyrylcholinesterase adduct biomarker from an accidental exposure. J Anal Toxicol 32:68–72
CAS
Article
Google Scholar
Somani SM (1992) Chemical warfare agents. Academic, San Diego
Google Scholar
Spruit HET, Trap HC, Langenberg JP, Benschop HP (2001) Bioanalysis of the enantiomers of (±)-sarin using automated thermal cold-trap injection combined with two-dimensional gas chromatography. J Anal Toxicol 25:57–61. https://doi.org/10.1093/jat/25.1.57
CAS
Article
PubMed
Google Scholar
van der Meer JA, Trap HC, Noort D, van der Schans MJ (2010) Comprehensive gas chromatography with time of flight MS and large volume introduction for the detection of fluoride-induced regenerated nerve agent in biological samples. J Chromatogr B 878:1320–1325. https://doi.org/10.1016/j.jchromb.2010.02.019
CAS
Article
Google Scholar
van der Schans MJ, Polhuijs M, van Dijk C, Degenhardt CEAM, Pleijsier K, Langenberg JP, Benschop HP (2004) Retrospective detection of exposure to nerve agents: analysis of phosphofluoridates originating from fluoride-induced reactivation of phosphylated BuChE. Arch Toxicol 78:508–524. https://doi.org/10.1007/s00204-004-0568-x
CAS
Article
PubMed
Google Scholar
Weissberg A, Madmon M, Elgarisi M, Dagan S (2017) Determination of ultra-trace amounts of G-type nerve agents in aqueous samples utilizing "in vial" instantaneous derivatization and LC-MS/MS analysis. J Chromatogr A 1512:71–77. https://doi.org/10.1016/j.chroma.2017.07.002
CAS
Article
PubMed
Google Scholar
Weissberg A, Madmon M, Elgarisi M, Dagan S (2018) Aqueous extraction followed by derivatization and liquid chromatography–mass spectrometry analysis: a unique strategy for trace detection and identification of G-nerve agents in environmental matrices. J Chromatogr A 1577:24–30. https://doi.org/10.1016/j.chroma.2018.09.052
CAS
Article
PubMed
Google Scholar
Weissberg A, Elgarisi M, Madmon M, Shifrovich A, Blanca M, Dagan S (2019) Identification of G-nerve agents at picogram levels from complex organic samples containing hydrocarbon interferences by aqueous extraction, followed by derivatization and liquid chromatography-mass spectrometry analysis. J Mass Spectrom 54:274–280. https://doi.org/10.1002/jms.4332
CAS
Article
PubMed
Google Scholar
Worek F, Mast U, Kiderlen D, Diepold C, Eyer P (1999) Improved determination of acetylcholinesterase activity in human blood. Clin Chim Acta 288:73–90
CAS
Article
Google Scholar