Skip to main content

Advertisement

Log in

A systematic review of smoking-related epigenetic alterations

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The aim of this study is to provide a systematic review of the known epigenetic alterations caused by cigarette smoke; establish an evidence-based perspective of their clinical value for screening, diagnosis, and treatment of smoke-related disorders; and discuss the challenges and ethical concerns associated with epigenetic studies. A well-defined, reproducible search strategy was employed to identify relevant literature (clinical, cellular, and animal-based) between 2000 and 2019 based on AMSTAR guidelines. A total of 80 studies were identified that reported alterations in DNA methylation, histone modifications, and miRNA expression following exposure to cigarette smoke. Changes in DNA methylation were most extensively documented for genes including AHRR, F2RL3, DAPK, and p16 after exposure to cigarette smoke. Likewise, miR16, miR21, miR146, and miR222 were identified to be differentially expressed in smokers and exhibit potential as biomarkers for determining susceptibility to COPD. We also identified 22 studies highlighting the transgenerational effects of maternal and paternal smoking on offspring. This systematic review lists the epigenetic events/alterations known to occur in response to cigarette smoke exposure and identifies the major genes and miRNAs that are potential targets for translational research in associated pathologies. Importantly, the limitations and ethical concerns related to epigenetic studies are also highlighted, as are the effects on the ability to address specific questions associated with exposure to tobacco/cigarette smoke. In the future, improved interpretation of epigenetic signatures will lead to their increased use as biomarkers and/or in drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adenuga D, Yao H, March TH, Seagrave J, Rahman I (2009) Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke. Am J Respir Cell Mol Biol 40(4):464–473

    Article  CAS  PubMed  Google Scholar 

  • Advani J, Subbannayya Y, Patel K et al (2017) Long-term cigarette smoke exposure and changes in MiRNA expression and proteome in non-small-cell lung cancer. OMICS 21(7):390–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkhaled Y, Laqqan M, Tierling S, Lo Porto C, Amor H, Hammadeh ME (2018) Impact of cigarette-smoking on sperm DNA methylation and its effect on sperm parameters. Andrologia. https://doi.org/10.1111/and.12950

    Article  PubMed  Google Scholar 

  • Ambatipudi S, Cuenin C, Hernandez-Vargas H et al (2016) Tobacco smoking-associated genome-wide DNA methylation changes in the EPIC study. Epigenomics 8(5):599–618

    Article  CAS  PubMed  Google Scholar 

  • Andersson BA, Sayardoust S, Lofgren S, Rutqvist LE, Laytragoon-Lewin N (2018) Cigarette smoking affects microRNAs and inflammatory biomarkers in healthy individuals and an association to single nucleotide polymorphisms is indicated. Biomarkers 24(2):180–185

    Article  PubMed  Google Scholar 

  • Banerjee A, Luettich K (2012) MicroRNAs as potential biomarkers of smoking-related diseases. Biomark Med 6(5):671–684

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Waters D, Camacho OM, Minet E (2015) Quantification of plasma microRNAs in a group of healthy smokers, ex-smokers and non-smokers and correlation to biomarkers of tobacco exposure. Biomarkers 20(2):123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes PJ (2009) Histone deacetylase-2 and airway disease. Ther Adv Respir Dis 3(5):23543

    Article  Google Scholar 

  • Beach SRH, Lei MK, Ong ML, Brody GH, Dogan MV, Philibert RA (2017) MTHFR methylation moderates the impact of smoking on DNA methylation at AHRR for African American young adults. Am J Med Genet B Neuropsychiatr Genet 174(6):608–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belinsky SA, Palmisano WA, Gilliland FD et al (2002) Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res 62(8):2370–2377

    CAS  PubMed  Google Scholar 

  • Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H (2011) Tobacco-smoking-related differential DNA methylation: 27 K discovery and replication. Am J Hum Genet 88(4):450–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD (2009) Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med 180(5):462–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton A (2011) Does the smoke ever really clear? Thirdhand smoke exposure raises new concerns. Environ Health Perspect 119(2):A70–A74

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell RM, Tummino PJ (2014) Cancer epigenetics drug discovery and development: the challenge of hitting the mark. J Clin Invest 124(1):64–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrozza MJ, Utley RT, Workman JL, Cote J (2003) The diverse functions of histone acetyltransferase complexes. Trends Genet 19(6):321–329

    Article  CAS  PubMed  Google Scholar 

  • Carvalho RH, Haberle V, Hou J et al (2012) Genome-wide DNA methylation profiling of non-small cell lung carcinomas. Epigenet Chromatin 5(1):9

    Article  Google Scholar 

  • Catalano R, Bruckner T, Gould J, Eskenazi B, Anderson E (2005) Sex ratios in California following the terrorist attacks of September 11. Hum Reprod 20(5):1221–1227

    Article  PubMed  Google Scholar 

  • Costa LA, da Silva ICB, Mariz B, da Silva MB, Freitas-Ribeiro GM, de Oliveira NFP (2016) Influence of smoking on methylation and hydroxymethylation levels in global DNA and specific sites of KRT14, KRT19, MIR-9-3 and MIR-137 genes of oral mucosa. Arch Oral Biol 72:56–65

    Article  CAS  PubMed  Google Scholar 

  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370(Pt 3):737–749

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vries M, van der Plaat DA, Nedeljkovic I et al (2018a) From blood to lung tissue: effect of cigarette smoke on DNA methylation and lung function. Respir Res 19(1):212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Vries M, van der Plaat DA, Vonk JM, Boezen HM (2018b) No association between DNA methylation and COPD in never and current smokers. BMJ Open Respir Res 5(1):e000282

    Article  PubMed  PubMed Central  Google Scholar 

  • Dogan MV, Shields B, Cutrona C et al (2014) The effect of smoking on DNA methylation of peripheral blood mononuclear cells from African American women. BMC Genomics 15:151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dogan MV, Beach SRH, Philibert RA (2017) Genetically contextual effects of smoking on genome wide DNA methylation. Am J Med Genet B Neuropsychiatr Genet 174(6):595–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards JR, Yarychkivska O, Boulard M, Bestor TH (2017) DNA methylation and DNA methyltransferases. Epigenet Chromatin 10:23

    Article  CAS  Google Scholar 

  • Eissenberg JC, Shilatifard A (2010) Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol 339(2):240–249

    Article  CAS  PubMed  Google Scholar 

  • Elliott HR, Tillin T, McArdle WL et al (2014) Differences in smoking associated DNA methylation patterns in South Asians and Europeans. Clin Epigenet 6(1):4. https://doi.org/10.1186/1868-7083-6-4

    Article  CAS  Google Scholar 

  • El-Zein RA, Young RP, Hopkins RJ, Etzel CJ (2012) Genetic predisposition to chronic obstructive pulmonary disease and/or lung cancer: important considerations when evaluating risk. Cancer Prev Res (Phila) 5(4):522–527

    Article  Google Scholar 

  • Fa S, Larsen TV, Bilde K et al (2016) Assessment of global DNA methylation in the first trimester fetal tissues exposed to maternal cigarette smoking. Clin Epigenet 8:128

    Article  CAS  Google Scholar 

  • Fasanelli F, Baglietto L, Ponzi E et al (2015) Hypomethylation of smoking-related genes is associated with future lung cancer in four prospective cohorts. Nat Commun 6:10192

    Article  CAS  PubMed  Google Scholar 

  • Gross TJ, Powers LS, Boudreau RL et al (2014) A microRNA processing defect in smokers’ macrophages is linked to SUMOylation of the endonuclease DICER. J Biol Chem 289(18):12823–12834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W, Yuan Y, Yang H et al (2018) Role of miR-195 in cigarette smoke-induced chronic obstructive pulmonary disease. Int Immunopharmacol 55:49–54

    Article  CAS  PubMed  Google Scholar 

  • Gunes S, Metin Mahmutoglu A, Arslan MA, Henkel R (2018) Smoking-induced genetic and epigenetic alterations in infertile men. Andrologia 50(9):e13124

    Article  PubMed  Google Scholar 

  • Gupta R, van Dongen J, Fu Y et al (2019) Epigenome-wide association study of serum cotinine in current smokers reveals novel genetically driven loci. Clin Epigenet 11(1):1

    Article  CAS  Google Scholar 

  • Gutierrez-Arcelus M, Ongen H, Lappalainen T et al (2015) Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing. PLoS Genet 11(1):e1004958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamad MF, Dayyih WAA, Laqqan M, AlKhaled Y, Montenarh M, Hammadeh ME (2018) The status of global DNA methylation in the spermatozoa of smokers and non-smokers. Reprod Biomed Online 37(5):581–589

    Article  CAS  PubMed  Google Scholar 

  • Hammons GJ, Yan Y, Lopatina NG et al (1999) Increased expression of hepatic DNA methyltransferase in smokers. Cell Biol Toxicol 15(6):389–394

    Article  CAS  PubMed  Google Scholar 

  • Harlid S, Xu Z, Panduri V, Sandler DP, Taylor JA (2014) CpG sites associated with cigarette smoking: analysis of epigenome-wide data from the Sister Study. Environ Health Perspect 122(7):673–678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heffernan T (2016) Editorial: the impact of active and passive smoking upon health and neurocognitive function. Front Psychiatry 7:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Heijink IH, de Bruin HG, van den Berge M et al (2013) Role of aberrant WNT signalling in the airway epithelial response to cigarette smoke in chronic obstructive pulmonary disease. Thorax 68(8):709–716

    Article  PubMed  Google Scholar 

  • Heijmans BT, Kremer D, Tobi EW, Boomsma DI, Slagboom PE (2007) Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet 16(5):547–554

    Article  CAS  PubMed  Google Scholar 

  • Herberth G, Bauer M, Gasch M et al (2014) Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol 133(2):543–550

    Article  CAS  PubMed  Google Scholar 

  • Hillemacher T, Frieling H, Moskau S et al (2008) Global DNA methylation is influenced by smoking behaviour. Eur Neuropsychopharmacol 18(4):295–298

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Wu J, Li Y et al (2014) Deregulation of serum microRNA expression is associated with cigarette smoking and lung cancer. Biomed Res Int 2014:364316

    PubMed  PubMed Central  Google Scholar 

  • Hyun K, Jeon J, Park K, Kim J (2017) Writing, erasing and reading histone lysine methylations. Exp Mol Med 49(4):e324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito K, Lim S, Caramori G, Chung KF, Barnes PJ, Adcock IM (2001) Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 15(6):1110–1112

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Caramori G, Lim S et al (2002) Expression and activity of histone deacetylases in human asthmatic airways. Am J Respir Crit Care Med 166(3):392–396

    Article  PubMed  Google Scholar 

  • Ito K, Ito M, Elliott WM et al (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 352(19):1967–1976

    Article  CAS  PubMed  Google Scholar 

  • Izzotti A, Calin GA, Steele VE, Croce CM, De Flora S (2009) Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light. FASEB J 23(9):3243–3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izzotti A, Larghero P, Longobardi M et al (2011) Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung. Mutat Res 717(1–2):9–16

    Article  CAS  PubMed  Google Scholar 

  • Jamal A, Phillips E, Gentzke AS et al (2018) Current cigarette smoking among adults—United States. MMWR Morb Mortal Wkly Rep 67(2):53–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssen HL, Reesink HW, Lawitz EJ et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694

    Article  CAS  PubMed  Google Scholar 

  • Jenkins TG, James ER, Alonso DF et al (2017) Cigarette smoking significantly alters sperm DNA methylation patterns. Andrology 5(6):1089–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin B, Robertson KD (2013) DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol 754:3–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joubert BR, Haberg SE, Nilsen RM et al (2012) 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 120(10):1425–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joubert BR, Haberg SE, Bell DA et al (2014) Maternal smoking and DNA methylation in newborns: in utero effect or epigenetic inheritance? Cancer Epidemiol Biomark Prev 23(6):1007–1017

    Article  CAS  Google Scholar 

  • Kaneda M, Okano M, Hata K et al (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429(6994):900–903

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Bagam P, Pinkston R, Singh DP, Batra S (2018) Cigarette smoke-induced inflammation: NLRP10-mediated mechanisms. Toxicology 398–399:52–67

    Article  PubMed  CAS  Google Scholar 

  • Khashan AS, McNamee R, Henriksen TB et al (2011) Risk of affective disorders following prenatal exposure to severe life events: a Danish population-based cohort study. J Psychiatr Res 45(7):879–885

    Article  PubMed  Google Scholar 

  • Knopik VS, Maccani MA, Francazio S, McGeary JE (2012) The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev Psychopathol 24(4):1377–1390

    Article  PubMed  PubMed Central  Google Scholar 

  • Konigshoff M, Eickelberg O (2010) WNT signaling in lung disease: a failure or a regeneration signal? Am J Respir Cell Mol Biol 42(1):21–31

    Article  PubMed  CAS  Google Scholar 

  • Laqqan M, Tierling S, Alkhaled Y, Porto CL, Solomayer EF, Hammadeh ME (2017) Aberrant DNA methylation patterns of human spermatozoa in current smoker males. Reprod Toxicol 71:126–133

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Pausova Z (2013) Cigarette smoking and DNA methylation. Front Genet 4:132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MK, Hong Y, Kim SY, London SJ, Kim WJ (2016) DNA methylation and smoking in Korean adults: epigenome-wide association study. Clin Epigenet. 8:103

    Article  Google Scholar 

  • Leng S, Wu G, Collins LB et al (2015) Implication of a Chromosome 15q15.2 Locus in Regulating UBR1 and Predisposing Smokers to MGMT Methylation in Lung. Cancer Res 75(15):3108–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Wong EM, Bui M et al (2018) Causal effect of smoking on DNA methylation in peripheral blood: a twin and family study. Clin Epigenet 10:18

    Article  CAS  Google Scholar 

  • Lim D, Maher E (2011) DNA methylation: a form of epigenetic control of gene expression. Obstet Gynaecol 12(1):37–42

    Google Scholar 

  • Lubick N (2011) Global estimate of SHS burden. Environ Health Perspect 119(2):A66–A67

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyn-Cook L, Word B, George N, Lyn-Cook B, Hammons G (2014) Effect of cigarette smoke condensate on gene promoter methylation in human lung cells. Tob Induc Dis 12(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ (2010) Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 5(7):583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKenzie TD, Bartecchi CE, Schrier RW (1994) The human costs of tobacco use (2). N Engl J Med 330(14):975–980

    Article  CAS  PubMed  Google Scholar 

  • Marczylo EL, Amoako AA, Konje JC, Gant TW, Marczylo TH (2012) Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics 7(5):432–439

    Article  CAS  PubMed  Google Scholar 

  • Markunas CA, Xu Z, Harlid S et al (2014) Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect 122(10):1147–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marwick JA, Kirkham PA, Stevenson CS et al (2004) Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol 31(6):633–642

    Article  CAS  PubMed  Google Scholar 

  • McCartney DL, Stevenson AJ, Hillary RF et al (2018) Epigenetic signatures of starting and stopping smoking. EBioMedicine 37:214–220

    Article  PubMed  PubMed Central  Google Scholar 

  • Milutinovic S, Brown SE, Zhuang Q, Szyf M (2004) DNA methyltransferase 1 knock down induces gene expression by a mechanism independent of DNA methylation and histone deacetylation. J Biol Chem 279(27):27915–27927

    Article  CAS  PubMed  Google Scholar 

  • Monick MM, Beach SR, Plume J et al (2012) Coordinated changes in AHRR methylation in lymphoblasts and pulmonary macrophages from smokers. Am J Med Genet B Neuropsychiatr Genet 159B(2):141–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moodie FM, Marwick JA, Anderson CS et al (2004) Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J 18(15):1897–1899

    Article  CAS  PubMed  Google Scholar 

  • Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38

    Article  CAS  PubMed  Google Scholar 

  • Morales E, Vilahur N, Salas LA et al (2016) Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy. Int J Epidemiol 45(5):1644–1655

    Article  PubMed  Google Scholar 

  • Murphy SK, Adigun A, Huang Z et al (2012) Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene 494(1):36–43

    Article  CAS  PubMed  Google Scholar 

  • Nichol JN, Dupere-Richer D, Ezponda T, Licht JD, Miller WH Jr (2016) H3K27 methylation: a focal point of epigenetic deregulation in cancer. Adv Cancer Res 131:59–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrow KL, Michailidi C, Guerrero-Preston R et al (2013) Cigarette smoke induces methylation of the tumor suppressor gene NISCH. Epigenetics 8(4):383–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil VK, Holloway JW, Zhang H et al (2013) Interaction of prenatal maternal smoking, interleukin 13 genetic variants and DNA methylation influencing airflow and airway reactivity. Clin Epigenet 5(1):22

    Article  CAS  Google Scholar 

  • Peluso ME, Munnia A, Bollati V et al (2014) Aberrant methylation of hypermethylated-in-cancer-1 and exocyclic DNA adducts in tobacco smokers. Toxicol Sci 137(1):47–54

    Article  CAS  PubMed  Google Scholar 

  • Peters I, Vaske B, Albrecht K, Kuczyk MA, Jonas U, Serth J (2007) Adiposity and age are statistically related to enhanced RASSF1A tumor suppressor gene promoter methylation in normal autopsy kidney tissue. Cancer Epidemiol Biomark Prev 16(12):2526–2532

    Article  CAS  Google Scholar 

  • Philibert RA, Beach SR, Lei MK, Brody GH (2013) Changes in DNA methylation at the aryl hydrocarbon receptor repressor may be a new biomarker for smoking. Clin Epigenet 5(1):19

    Article  CAS  Google Scholar 

  • Philibert R, Hollenbeck N, Andersen E et al (2016) Reversion of AHRR demethylation is a quantitative biomarker of smoking cessation. Front Psychiatry 7:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Prince C, Hammerton G, Taylor AE et al (2019) Investigating the impact of cigarette smoking behaviours on DNA methylation patterns in adolescence. Hum Mol Genet 28(1):155–165

    CAS  PubMed  Google Scholar 

  • Protano C, Vitali M (2011) The new danger of thirdhand smoke: why passive smoking does not stop at secondhand smoke. Environ Health Perspect 119(10):A422

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu W, Baccarelli A, Carey VJ et al (2012) Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am J Respir Crit Care Med 185(4):373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds LM, Lohman K, Pittman GS et al (2017) Tobacco exposure-related alterations in DNA methylation and gene expression in human monocytes: the Multi-Ethnic Study of Atherosclerosis (MESA). Epigenetics 12(12):1092–1100

    Article  PubMed  Google Scholar 

  • Richmond RC, Simpkin AJ, Woodward G et al (2015) Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum Mol Genet 24(8):2201–2217

    Article  CAS  PubMed  Google Scholar 

  • Richmond RC, Suderman M, Langdon R, Relton CL, Davey Smith G (2018) DNA methylation as a marker for prenatal smoke exposure in adults. Int J Epidemiol 47(4):1120–1130

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothstein MA, Cai Y, Marchant GE (2009) The ghost in our genes: legal and ethical implications of epigenetics. Health Matrix Clevel 19(1):1–62

    PubMed  PubMed Central  Google Scholar 

  • Saha SP, Bhalla DK, Whayne TF Jr, Gairola C (2007) Cigarette smoke and adverse health effects: an overview of research trends and future needs. Int J Angiol 16(3):77–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Satta R, Maloku E, Zhubi A et al (2008) Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons. Proc Natl Acad Sci USA 105(42):16356–16361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabani M, Borry P, Smeers I, Bekaert B (2018) Forensic epigenetic age estimation and beyond: ethical and legal considerations. Trends Genet 34(7):489–491

    Article  CAS  PubMed  Google Scholar 

  • Shea BJ, Grimshaw JM, Wells GA et al (2007) Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 7:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen W, Liu J, Zhao G et al (2017) Repression of Toll-like receptor-4 by microRNA-149-3p is associated with smoking-related COPD. Int J Chron Obstruct Pulmon Dis 12:705–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenker NS, Polidoro S, van Veldhoven K et al (2013) Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet 22(5):843–851

    Article  CAS  PubMed  Google Scholar 

  • Shi B, Gao H, Zhang T, Cui Q (2016) Analysis of plasma microRNA expression profiles revealed different cancer susceptibility in healthy young adult smokers and middle-aged smokers. Oncotarget 7(16):21676–21685

    PubMed  PubMed Central  Google Scholar 

  • Siedlinski M, Klanderman B, Sandhaus RA et al (2012) Association of cigarette smoking and CRP levels with DNA methylation in alpha-1 antitrypsin deficiency. Epigenetics 7(7):720–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohal SS, Reid D, Soltani A et al (2013) Changes in airway histone deacetylase2 in smokers and COPD with inhaled corticosteroids: a randomized controlled trial. PLoS One 8(5):e64833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soria JC, Rodriguez M, Liu DD, Lee JJ, Hong WK, Mao L (2002) Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Res 62(2):351–355

    CAS  PubMed  Google Scholar 

  • Su D, Wang X, Campbell MR et al (2016) Distinct epigenetic effects of tobacco smoking in whole blood and among leukocyte subtypes. PLoS One 11(12):e0166486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun YV, Smith AK, Conneely KN et al (2013) Epigenomic association analysis identifies smoking-related DNA methylation sites in African Americans. Hum Genet 132(9):1027–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundar IK, Rahman I (2016) Gene expression profiling of epigenetic chromatin modification enzymes and histone marks by cigarette smoke: implications for COPD and lung cancer. Am J Physiol Lung Cell Mol Physiol 311(6):L1245–L1258

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundar IK, Chung S, Hwang JW et al (2012) Mitogen- and stress-activated kinase 1 (MSK1) regulates cigarette smoke-induced histone modifications on NF-kappaB-dependent genes. PLoS One 7(2):e31378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundar IK, Nevid MZ, Friedman AE, Rahman I (2014) Cigarette smoke induces distinct histone modifications in lung cells: implications for the pathogenesis of COPD and lung cancer. J Proteome Res 13(2):982–996

    Article  CAS  PubMed  Google Scholar 

  • Sundar IK, Yin Q, Baier BS et al (2017) DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD. Clin Epigenet 9:38

    Article  CAS  Google Scholar 

  • Suter M, Abramovici A, Showalter L et al (2010) In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. Metabolism 59(10):1481–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suter M, Ma J, Harris A et al (2011) Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics 6(11):1284–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Shigematsu H, Shames DS et al (2007) Methylation and gene silencing of the Ras-related GTPase gene in lung and breast cancers. Ann Surg Oncol 14(4):1397–1404

    Article  PubMed  Google Scholar 

  • Szulakowski P, Crowther AJ, Jimenez LA et al (2006) The effect of smoking on the transcriptional regulation of lung inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 174(1):41–50

    Article  CAS  PubMed  Google Scholar 

  • Tehranifar P, Wu HC, McDonald JA et al (2018) Maternal cigarette smoking during pregnancy and offspring DNA methylation in midlife. Epigenetics 13(2):129–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Terzikhan N, Verhamme KM, Hofman A, Stricker BH, Brusselle GG, Lahousse L (2016) Prevalence and incidence of COPD in smokers and non-smokers: the Rotterdam Study. Eur J Epidemiol 31(8):785–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • UniProt (2019a) UniProtKB - Q8NFU7 (TET1_HUMAN). In. https://www.uniprot.org/uniprot/Q8NFU7. Accessed Jan 4 2019

  • UniProt (2019b) UniProtKB - Q9UBC3 (DNM3B_HUMAN). In. https://www.uniprot.org/uniprot/Q9UBC3. Accessed Jan 4 2019

  • Van Pottelberge GR, Mestdagh P, Bracke KR et al (2011) MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 183(7):898–906

    Article  PubMed  Google Scholar 

  • Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta 11:1231–1243

    Article  CAS  Google Scholar 

  • Wan ES, Qiu W, Baccarelli A et al (2012) Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. Hum Mol Genet 21(13):3073–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Wang R, Strulovici-Barel Y et al (2015) Persistence of smoking-induced dysregulation of miRNA expression in the small airway epithelium despite smoking cessation. PLoS One 10(4):e0120824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weinhold B (2006) Epigenetics: the science of change. Environ Health Perspect 114(3):A160–A167

    Article  PubMed  PubMed Central  Google Scholar 

  • Willinger CM, Rong J, Tanriverdi K et al (2017) MicroRNA signature of cigarette smoking and evidence for a putative causal role of microRNAs in smoking-related inflammation and target organ damage. Circ Cardiovasc Genet 10(5):e001678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson R, Wahl S, Pfeiffer L et al (2017) The dynamics of smoking-related disturbed methylation: a two time-point study of methylation change in smokers, non-smokers and former smokers. BMC Genom 18(1):805

    Article  CAS  Google Scholar 

  • Xu Q, Ma JZ, Payne TJ, Li MD (2010) Determination of methylated CpG sites in the promoter region of catechol-O-methyltransferase (COMT) and their involvement in the etiology of tobacco smoking. Front Psychiatry 1:16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Fang P, Zhu Z et al (2013) Cigarette smoking exposure alters pebp1 DNA methylation and protein profile involved in MAPK signaling pathway in mice testis. Biol Reprod 89(6):142

    Article  PubMed  CAS  Google Scholar 

  • Yang IV, Schwartz DA (2011) Epigenetic control of gene expression in the lung. Am J Respir Crit Care Med 183(10):1295–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SR, Chida AS, Bauter MR et al (2006) Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. Am J Physiol Lung Cell Mol Physiol 291(1):L46–L57

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Hwang JW, Moscat J et al (2010) Protein kinase C zeta mediates cigarette smoke/aldehyde- and lipopolysaccharide-induced lung inflammation and histone modifications. J Biol Chem 285(8):5405–5416

    Article  CAS  PubMed  Google Scholar 

  • Zaghlool SB, Al-Shafai M, Al Muftah WA, Kumar P, Falchi M, Suhre K (2015) Association of DNA methylation with age, gender, and smoking in an Arab population. Clin Epigenet 7:6

    Article  CAS  Google Scholar 

  • Zhang Y, Yang R, Burwinkel B et al (2014) F2RL3 methylation in blood DNA is a strong predictor of mortality. Int J Epidemiol 43(4):1215–1225

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheleznyakova GY, Piket E, Marabita F et al (2017) Epigenetic research in multiple sclerosis: progress, challenges, and opportunities. Physiol Genom 49(9):447–461

    Article  CAS  Google Scholar 

  • Zhu X, Li J, Deng S et al (2016) Genome-wide analysis of DNA methylation and cigarette smoking in a Chinese population. Environ Health Perspect 124(7):966–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The funding has been received from FAMRI with Grant No. 123253_YCSA_Faculty; NIH with Grant No. 7 R15 ES023151 02 and SUS Foundation with Grant No. FY 2018-020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Batra.

Ethics declarations

Conflict of interest

The employment affiliation of the authors is shown on the cover page of the manuscript. The authors declare no conflict of interest. All the authors participated in the study design and interpretation of the findings. We declare that none of the authors have participated in any regulatory or legal proceedings related to the contents of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Begum, R., Thota, S. et al. A systematic review of smoking-related epigenetic alterations. Arch Toxicol 93, 2715–2740 (2019). https://doi.org/10.1007/s00204-019-02562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02562-y

Keywords

Navigation