Skip to main content

Advertisement

Log in

Uncovering epigenetic landscape: a new path for biomarkers identification and drug development

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Scientific advances in recent decades have revealed an incredible degree of plasticity in gene expression in response to various environmental, nutritional, physiological, pathological, and behavioral conditions. Epigenetics emerges in this sense, as the link between the internal (genetic) and external (environmental) factors underlying the expression of the phenotype. Methylation of DNA and histone post-translationa modifications are canonical epigenetic events. Additionally, noncoding RNAs molecules (microRNAs and lncRNAs) have also been proposed as another layer of epigenetic regulation. Together, these events are responsible for regulating gene expression throughout life, controlling cellular fate in both normal and pathological development. Despite being a relatively recent science, epigenetics has been arousing the interest of researchers from different segments of the life sciences and the general public. This review highlights the recent advances in the characterization of the epigenetic events and points promising use of these brands for the diagnosis, prognosis, and therapy of diseases. We also present several classes of epigenetic modifying compounds with therapeutic applications (so-call epidrugs) and their current status in clinical trials and approved by the FDA. In summary, hopefully, we provide the reader with theoretical bases for a better understanding of the epigenetic mechanisms and of the promising application of these marks and events in the medical clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2HG:

2-Hydroxyglutarate

5-caC:

5-Carboxylcytosine

5-fC:

5-Formylcytosine

5-hmC:

5-Hydroxymethylcytosine

5-hmU:

5-Hydroxymethyluracil

5-mC:

5-Methylcytosine

Ago:

Argonaute

AR:

Active restoration

ASO:

Oligonucleotides antisense

ATRX:

Cytosine-rich zinc finger DNA binding

BER:

Base excision repair

DNMTi:

DNA methyltransferase inhibitors

DNMTs:

DNA methyltransferases

DOT1L:

Disruptor of telomeric silencing-1-like

FDA:

Food and Drug Administration

HATs:

Histone acetyltransferases

HDACi:

Histone deacetylase inhibitors

HDACs:

Histone deacetylases

HDMs:

Histone demethylases

HKMTs:

Histone lysine methyltransferases

HMTi:

Histone methyltransferases inhibitors

HMTs:

Histone methyltransferases

IDH:

Isocitrate dehydrogenase

JmjC:

Jumonji C

JMJD6:

Jumonji domain-containing protein 6

KDMTs:

Histone lysine demethylase

lncRNAs :

Long non-coding RNAs

LSD:

Lysine specific demethylase

MBDs:

Methyl-CpG binding domain family proteins

miRNAs:

MicroRNAs

ncDNA:

Non-coding DNA

ncRNAs:

Non-coding RNAs

NLS:

Nuclear localization signal

oxi-mCs:

Oxidized forms of 5-methylcytosine

PAD4:

Deaminase enzymes peptidyl arginine deaminase 4

PBD:

Proliferating cell nuclear antigen-binding

PD:

Passive dilution

PHD:

Polybromo homology

PRMTs:

Proteins arginine methyltransferases

PTMs:

Histone Post-translational Modifications

PWWP:

Tetrapeptide chromatin binding

RISC:

RNA-induced silencing complex

RNAi:

RNA interference

SAM:

S-Adenosyl-l-methionine

SAH:

S-Adenosyl-l-homocysteine

SIRTs:

Sirtuins

TDG:

Thymine DNA glycosylase protein

TETs:

Ten–eleven translocation methylcytosine dioxygenases

UHRF1:

Ubiquitin-like with plant homeodomain and RING finger domain 1 protein

ZBG:

Zinc-binding group

α-KG:

α-Ketoglutarate

References

  1. Waddington CH (1942) The epigenotype. Int J Epidemiol. https://doi.org/10.1093/ije/dyr184

    Article  Google Scholar 

  2. Waddington CH (1957) The strategy of the genes. George Allen & Unwin, London

    Google Scholar 

  3. Haig D (2004) The (dual) origin of epigenetics. Cold Spring Harb Symp Quant Biol 69:67–70. https://doi.org/10.1101/sqb.2004.69.67

    Article  CAS  PubMed  Google Scholar 

  4. Slack JMW (2002) Conrad Hal Waddington: the last Renaissance biologist? Nat Rev Genet 3:889–895. https://doi.org/10.1038/nrg933

    Article  CAS  PubMed  Google Scholar 

  5. Laland K, Uller T, Feldman M et al (2014) Does evolutionary theory need a rethink? Nature 514:161–164. https://doi.org/10.1038/514161a

    Article  CAS  PubMed  Google Scholar 

  6. Burggren W (2016) Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology. https://doi.org/10.3390/biology5020024

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jablonka E, Lamb MJ (2015) The inheritance of acquired epigenetic variations. Int J Epidemiol 44:1094–1103. https://doi.org/10.1093/ije/dyv020

    Article  PubMed  Google Scholar 

  8. Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80

    Article  Google Scholar 

  9. Holliday R (1987) The inheritance of epigenetic defects. Science 238:163–170

    Article  CAS  Google Scholar 

  10. Mann JR (2014) Epigenetics and memigenetics. Cell Mol Life Sci CMLS 71:1117–1122. https://doi.org/10.1007/s00018-014-1560-0

    Article  CAS  PubMed  Google Scholar 

  11. Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9:3–12. https://doi.org/10.4161/epi.27473

    Article  CAS  PubMed  Google Scholar 

  12. Wei J-W, Huang K, Yang C, Kang C-S (2017) Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep 37:3–9

    Article  Google Scholar 

  13. Hamm CA, Costa FF (2011) The impact of epigenomics on future drug design and new therapies. Drug Discov Today 16:626–635. https://doi.org/10.1016/j.drudis.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  14. Brazel AJ, Vernimmen D (2016) The complexity of epigenetic diseases. J Pathol 238:333–344. https://doi.org/10.1002/path.4647

    Article  PubMed  Google Scholar 

  15. Choi S-W, Friso S (2010) Epigenetics: a new bridge between nutrition and health. Adv Nutr Int Rev J 1:8–16. https://doi.org/10.3945/an.110.1004

    Article  CAS  Google Scholar 

  16. Samanta S, Rajasingh S, Cao T et al (2017) Epigenetic dysfunctional diseases and therapy for infection and inflammation. Biochim Biophys Acta 1863:518–528. https://doi.org/10.1016/j.bbadis.2016.11.030

    Article  CAS  Google Scholar 

  17. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463. https://doi.org/10.1038/nature02625

    Article  CAS  PubMed  Google Scholar 

  18. Martinez-Jimenez CP, Sandoval J (2015) Epigenetic crosstalk: a molecular language in human metabolic disorders. Front Biosci Sch Ed 7:46–57

    Article  Google Scholar 

  19. Gujar H, Weisenberger DJ, Liang G (2019) The roles of human DNA methyltransferases and their isoforms in shaping the epigenome. Genes. https://doi.org/10.3390/genes10020172

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hyun K, Jeon J, Park K, Kim J (2017) Writing, erasing and reading histone lysine methylations. Exp Mol Med 49:e324. https://doi.org/10.1038/emm.2017.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kashi K, Henderson L, Bonetti A, Carninci P (2016) Discovery and functional analysis of lncRNAs: methodologies to investigate an uncharacterized transcriptome. Biochim Biophys Acta 1859:3–15. https://doi.org/10.1016/j.bbagrm.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  22. Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology. https://doi.org/10.3390/biology5010003

    Article  PubMed  PubMed Central  Google Scholar 

  23. García-Giménez JL, Sanchis-Gomar F, Lippi G et al (2012) Epigenetic biomarkers: a new perspective in laboratory diagnostics. Clin Chim Acta 413:1576–1582. https://doi.org/10.1016/j.cca.2012.05.021

    Article  CAS  PubMed  Google Scholar 

  24. Sandoval J, Peiró-Chova L, Pallardó FV, García-Giménez JL (2013) Epigenetic biomarkers in laboratory diagnostics: emerging approaches and opportunities. Expert Rev Mol Diagn 13:457–471. https://doi.org/10.1586/erm.13.37

    Article  CAS  PubMed  Google Scholar 

  25. Ganesan A, Arimondo PB, Rots MG et al (2019) The timeline of epigenetic drug discovery: from reality to dreams. Clin Epigenetics 11:174. https://doi.org/10.1186/s13148-019-0776-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ganesan A (2018) Epigenetic drug discovery: a success story for cofactor interference. Philos Trans R Soc B Biol Sci 373:20170069. https://doi.org/10.1098/rstb.2017.0069

    Article  CAS  Google Scholar 

  27. Prachayasittikul V, Prathipati P, Pratiwi R et al (2017) Exploring the epigenetic drug discovery landscape. Expert Opin Drug Discov 12:345–362. https://doi.org/10.1080/17460441.2017.1295954

    Article  CAS  PubMed  Google Scholar 

  28. Shimbo T, Wade PA (2016) Proteins that read DNA methylation. Adv Exp Med Biol 945:303–320. https://doi.org/10.1007/978-3-319-43624-1_13

    Article  CAS  PubMed  Google Scholar 

  29. Chen RZ, Pettersson U, Beard C et al (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395:89–93. https://doi.org/10.1038/25779

    Article  CAS  PubMed  Google Scholar 

  30. Chen T, Li E (2004) Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol 60:55–89. https://doi.org/10.1016/S0070-2153(04)60003-2

    Article  CAS  PubMed  Google Scholar 

  31. Edwards JR, Yarychkivska O, Boulard M, Bestor TH (2017) DNA methylation and DNA methyltransferases. Epigenetics Chromatin 10:23. https://doi.org/10.1186/s13072-017-0130-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  Google Scholar 

  33. Ioshikhes IP, Zhang MQ (2000) Large-scale human promoter mapping using CpG islands. Nat Genet 26:61–63. https://doi.org/10.1038/79189

    Article  CAS  PubMed  Google Scholar 

  34. Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6:a019133. https://doi.org/10.1101/cshperspect.a019133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shirane K, Toh H, Kobayashi H et al (2013) Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLOS Genet 9:e1003439. https://doi.org/10.1371/journal.pgen.1003439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Woodcock DM, Crowther PJ, Diver WP (1987) The majority of methylated deoxycytidines in human DNA are not in the CpG dinucleotide. Biochem Biophys Res Commun 145:888–894

    Article  CAS  Google Scholar 

  37. Meissner A, Mikkelsen TS, Gu H et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770. https://doi.org/10.1038/nature07107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stadler MB, Murr R, Burger L et al (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:490–495. https://doi.org/10.1038/nature10716

    Article  CAS  Google Scholar 

  39. Edwards JR, O’Donnell AH, Rollins RA et al (2010) Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. Genome Res 20:972–980. https://doi.org/10.1101/gr.101535.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. An J, Rao A, Ko M (2017) TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp Mol Med 49:e323. https://doi.org/10.1038/emm.2017.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Attwood JT, Yung RL, Richardson BC (2002) DNA methylation and the regulation of gene transcription. Cell Mol Life Sci CMLS 59:241–257

    Article  CAS  Google Scholar 

  42. Du Q, Luu P-L, Stirzaker C, Clark SJ (2015) Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 7:1051–1073. https://doi.org/10.2217/epi.15.39

    Article  CAS  PubMed  Google Scholar 

  43. Bestor TH, Edwards JR, Boulard M (2015) Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci U S A 112:6796–6799. https://doi.org/10.1073/pnas.1415301111

    Article  CAS  PubMed  Google Scholar 

  44. Uysal F, Akkoyunlu G, Ozturk S (2015) Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos. Biochimie 116:103–113. https://doi.org/10.1016/j.biochi.2015.06.019

    Article  CAS  PubMed  Google Scholar 

  45. Bostick M, Kim JK, Estève P-O et al (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764. https://doi.org/10.1126/science.1147939

    Article  CAS  PubMed  Google Scholar 

  46. Hermann A, Goyal R, Jeltsch A (2004) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279:48350–48359. https://doi.org/10.1074/jbc.M403427200

    Article  CAS  PubMed  Google Scholar 

  47. Yoder JA, Soman NS, Verdine GL, Bestor TH (1997) DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J Mol Biol 270:385–395. https://doi.org/10.1006/jmbi.1997.1125

    Article  CAS  PubMed  Google Scholar 

  48. Avvakumov GV, Walker JR, Xue S et al (2008) Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 455:822–825. https://doi.org/10.1038/nature07273

    Article  CAS  PubMed  Google Scholar 

  49. Sharif J, Muto M, Takebayashi S et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912. https://doi.org/10.1038/nature06397

    Article  CAS  Google Scholar 

  50. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  Google Scholar 

  51. Mertineit C, Yoder JA, Taketo T et al (1998) Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 125:889–897

    CAS  PubMed  Google Scholar 

  52. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  Google Scholar 

  53. Chen T, Ueda Y, Xie S, Li E (2002) A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with active de novo methylation. J Biol Chem 277:38746–38754. https://doi.org/10.1074/jbc.M205312200

    Article  CAS  PubMed  Google Scholar 

  54. Ostler K, Davis E, Payne S et al (2007) Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene 26:5553–5563. https://doi.org/10.1038/sj.onc.1210351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Duymich CE, Charlet J, Yang X et al (2016) DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nat Commun. https://doi.org/10.1038/ncomms11453

    Article  PubMed  PubMed Central  Google Scholar 

  56. Robertson KD, Uzvolgyi E, Liang G et al (1999) The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 27:2291–2298

    Article  CAS  Google Scholar 

  57. Aapola U, Kawasaki K, Scott HS et al (2000) Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics 65:293–298. https://doi.org/10.1006/geno.2000.6168

    Article  CAS  PubMed  Google Scholar 

  58. Aapola U, Lyle R, Krohn K et al (2001) Isolation and initial characterization of the mouse Dnmt3l gene. Cytogenet Cell Genet 92:122–126. https://doi.org/10.1159/000056881

    Article  CAS  PubMed  Google Scholar 

  59. Deplus R, Brenner C, Burgers WA et al (2002) Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res 30:3831–3838

    Article  CAS  Google Scholar 

  60. Bourc’his D, Xu GL, Lin CS et al (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539. https://doi.org/10.1126/science.1065848

    Article  PubMed  Google Scholar 

  61. Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99. https://doi.org/10.1038/nature02886

    Article  CAS  PubMed  Google Scholar 

  62. Hata K, Okano M, Lei H, Li E (2002) Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Dev Camb Engl 129:1983–1993

    CAS  Google Scholar 

  63. Webster KE, O’Bryan MK, Fletcher S et al (2005) Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci U S A 102:4068–4073. https://doi.org/10.1073/pnas.0500702102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gowher H, Liebert K, Hermann A et al (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280:13341–13348. https://doi.org/10.1074/jbc.M413412200

    Article  CAS  PubMed  Google Scholar 

  65. Ashapkin VV, Kutueva LI, Vanyushin BF (2016) [Dnmt2 is the most evolutionary conserved and enigmatic cytosine DNA methyltransferase in eukaryotes]. Genetika 52:269–282

    CAS  PubMed  Google Scholar 

  66. Okano M, Xie S, Li E (1998) Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res 26:2536–2540. https://doi.org/10.1093/nar/26.11.2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Turek-Plewa J, Jagodziński PP (2005) The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett 10:631–647

    CAS  PubMed  Google Scholar 

  68. Kunert N, Marhold J, Stanke J et al (2003) A Dnmt2-like protein mediates DNA methylation in Drosophila. Dev Camb Engl 130:5083–5090. https://doi.org/10.1242/dev.00716

    Article  CAS  Google Scholar 

  69. Liu K, Wang YF, Cantemir C, Muller MT (2003) Endogenous assays of DNA methyltransferases: evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian cells in vivo. Mol Cell Biol 23:2709–2719. https://doi.org/10.1128/MCB.23.8.2709-2719.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP et al (2016) Mechanism and biological role of Dnmt2 in nucleic acid methylation. RNA Biol 14:1108–1123. https://doi.org/10.1080/15476286.2016.1191737

    Article  PubMed  PubMed Central  Google Scholar 

  71. Goll MG, Kirpekar F, Maggert KA et al (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398. https://doi.org/10.1126/science.1120976

    Article  CAS  Google Scholar 

  72. Schaefer M, Pollex T, Hanna K et al (2010) RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 24:1590–1595. https://doi.org/10.1101/gad.586710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin M-J, Tang L-Y, Reddy MN, Shen C-KJ (2005) DNA methyltransferase gene dDnmt2 and longevity of Drosophila. J Biol Chem 280:861–864. https://doi.org/10.1074/jbc.C400477200

    Article  CAS  PubMed  Google Scholar 

  74. Shanmugam R, Fierer J, Kaiser S et al (2015) Cytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequences. Cell Discov 1:celldisc201510. https://doi.org/10.1038/celldisc.2015.10

    Article  CAS  Google Scholar 

  75. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534. https://doi.org/10.1038/nrg.2017.33

    Article  CAS  PubMed  Google Scholar 

  76. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479. https://doi.org/10.1038/nature12750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303. https://doi.org/10.1126/science.1210597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu L, Lu J, Cheng J et al (2015) Structural insight into substrate preference for TET-mediated oxidation. Nature 527:118–122. https://doi.org/10.1038/nature15713

    Article  CAS  PubMed  Google Scholar 

  79. Iyer LM, Tahiliani M, Rao A, Aravind L (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle Georget Tex 8:1698–1710

    Article  CAS  Google Scholar 

  80. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935. https://doi.org/10.1126/science.1170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ko M, An J, Bandukwala HS et al (2013) Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497:122–126. https://doi.org/10.1038/nature12052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hackett JA, Sengupta R, Zylicz JJ et al (2013) Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science. https://doi.org/10.1126/science.1229277

    Article  PubMed  Google Scholar 

  83. Ito S, D’Alessio AC, Taranova OV et al (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES cell self-renewal, and ICM specification. Nature 466:1129–1133. https://doi.org/10.1038/nature09303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Iqbal K, Jin S-G, Pfeifer GP, Szabó PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 108:3642–3647. https://doi.org/10.1073/pnas.1014033108

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wossidlo M, Nakamura T, Lepikhov K et al (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241. https://doi.org/10.1038/ncomms1240

    Article  CAS  PubMed  Google Scholar 

  86. Zhang W, Xia W, Wang Q et al (2016) Isoform switch of TET1 regulates DNA demethylation and mouse development. Mol Cell 64:1062–1073. https://doi.org/10.1016/j.molcel.2016.10.030

    Article  CAS  PubMed  Google Scholar 

  87. Jin S-G, Zhang Z-M, Dunwell TL et al (2016) Tet3 reads 5-carboxylcytosine through its CXXC domain and is a potential guardian against neurodegeneration. Cell Rep 14:493–505. https://doi.org/10.1016/j.celrep.2015.12.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu N, Wang M, Deng W et al (2013) Intrinsic and extrinsic connections of Tet3 dioxygenase with CXXC zinc finger modules. PLoS ONE 8:e62755. https://doi.org/10.1371/journal.pone.0062755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286:35334–35338. https://doi.org/10.1074/jbc.C111.284620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Weber AR, Krawczyk C, Robertson AB et al (2016) Biochemical reconstitution of TET1–TDG–BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun. https://doi.org/10.1038/ncomms10806

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bernstein C, Bernstein H (2019) Demethylation in early embryonic development and memory. DNA Methylation Mech. https://doi.org/10.5772/intechopen.90306

    Article  Google Scholar 

  92. Ji D, Lin K, Song J, Wang Y (2014) Effects of tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation. Mol Biosyst 10:1749–1752. https://doi.org/10.1039/c4mb00150h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu H, Zhang Y (2015) Charting oxidized methylcytosines at base resolution. Nat Struct Mol Biol 22:656–661. https://doi.org/10.1038/nsmb.3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Iurlaro M, Ficz G, Oxley D et al (2013) A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol 14:R119. https://doi.org/10.1186/gb-2013-14-10-r119

    Article  PubMed  PubMed Central  Google Scholar 

  95. Spruijt CG, Gnerlich F, Smits AH et al (2013) Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152:1146–1159. https://doi.org/10.1016/j.cell.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  96. Kellinger MW, Song C-X, Chong J et al (2012) 5-Formyl- and 5-carboxyl-cytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat Struct Mol Biol 19:831–833. https://doi.org/10.1038/nsmb.2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang L, Zhou Y, Xu L et al (2015) Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Nature 523:621–625. https://doi.org/10.1038/nature14482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Raiber E-A, Murat P, Chirgadze DY et al (2015) 5-Formylcytosine alters the structure of the DNA double helix. Nat Struct Mol Biol 22:44–49. https://doi.org/10.1038/nsmb.2936

    Article  CAS  PubMed  Google Scholar 

  99. Szulik MW, Pallan PS, Nocek B et al (2015) Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine. Biochemistry 54:1294–1305. https://doi.org/10.1021/bi501534x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Andrews AJ, Luger K (2011) Nucleosome structure(s) and stability: variations on a theme. Annu Rev Biophys 40:99–117. https://doi.org/10.1146/annurev-biophys-042910-155329

    Article  CAS  PubMed  Google Scholar 

  101. Zhang P, Torres K, Liu X et al (2016) An overview of chromatin-regulating proteins in cells. Curr Protein Pept Sci 17:401–410

    Article  CAS  Google Scholar 

  102. Luger K, Mäder AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260. https://doi.org/10.1038/38444

    Article  CAS  Google Scholar 

  103. Chen Z, Li S, Subramaniam S et al (2017) Epigenetic regulation: a new frontier for biomedical engineers. Annu Rev Biomed Eng 19:195–219. https://doi.org/10.1146/annurev-bioeng-071516-044720

    Article  CAS  PubMed  Google Scholar 

  104. Kebede AF, Schneider R, Daujat S (2015) Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J 282:1658–1674. https://doi.org/10.1111/febs.13047

    Article  CAS  PubMed  Google Scholar 

  105. Swygert SG, Peterson CL (2014) Chromatin dynamics: interplay between remodeling enzymes and histone modifications. Biochim Biophys Acta 1839:728–736. https://doi.org/10.1016/j.bbagrm.2014.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang T, Cooper S, Brockdorff N (2015) The interplay of histone modifications—writers that read. EMBO Rep 16:1467–1481. https://doi.org/10.15252/embr.201540945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Musselman CA, Lalonde M-E, Côté J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19:1218–1227. https://doi.org/10.1038/nsmb.2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    Article  CAS  Google Scholar 

  109. Rivera CM, Ren B (2013) Mapping human epigenomes. Cell 155:39–55. https://doi.org/10.1016/j.cell.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  110. Arnaudo AM, Garcia BA (2013) Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin 6:24. https://doi.org/10.1186/1756-8935-6-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Phillips DMP (1963) The presence of acetyl groups in histones. Biochem J 87:258–263

    Article  CAS  Google Scholar 

  112. Ma F, Zhang C (2016) Histone modifying enzymes: novel disease biomarkers and assay development. Expert Rev Mol Diagn 16:297–306. https://doi.org/10.1586/14737159.2016.1135057

    Article  CAS  PubMed  Google Scholar 

  113. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259–266. https://doi.org/10.1038/nsmb.2470

    Article  CAS  PubMed  Google Scholar 

  114. Lu X, Wang L, Yu C et al (2015) Histone acetylation modifiers in the pathogenesis of Alzheimer’s disease. Front Cell Neurosci. https://doi.org/10.3389/fncel.2015.00226

    Article  PubMed  PubMed Central  Google Scholar 

  115. Marmorstein R, Zhou M-M (2014) Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 6:a018762. https://doi.org/10.1101/cshperspect.a018762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Simon RP, Robaa D, Alhalabi Z et al (2016) KATching-up on small molecule modulators of lysine acetyltransferases. J Med Chem 59:1249–1270. https://doi.org/10.1021/acs.jmedchem.5b01502

    Article  CAS  PubMed  Google Scholar 

  117. Ferrari A, Fiorino E, Giudici M et al (2012) Linking epigenetics to lipid metabolism: focus on histone deacetylases. Mol Membr Biol 29:257–266. https://doi.org/10.3109/09687688.2012.729094

    Article  CAS  PubMed  Google Scholar 

  118. Rafehi H, Khan AW, El-Osta A (2016) Improving understanding of chromatin regulatory proteins and potential implications for drug discovery. Expert Rev Proteomics 13:435–445. https://doi.org/10.1586/14789450.2016.1159960

    Article  CAS  PubMed  Google Scholar 

  119. Kurylowicz A (2016) In search of new therapeutic targets in obesity treatment: sirtuins. Int J Mol Sci. https://doi.org/10.3390/ijms17040572

    Article  PubMed  PubMed Central  Google Scholar 

  120. Pirinen E, Sasso GL, Auwerx J (2012) Mitochondrial sirtuins and metabolic homeostasis. Best Pract Res Clin Endocrinol Metab 26:759–770. https://doi.org/10.1016/j.beem.2012.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li X, Kazgan N (2011) Mammalian sirtuins and energy metabolism. Int J Biol Sci 7:575–587. https://doi.org/10.7150/ijbs.7.575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chalkiadaki A, Guarente L (2012) Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat Rev Endocrinol 8:287–296. https://doi.org/10.1038/nrendo.2011.225

    Article  CAS  PubMed  Google Scholar 

  123. Haigis MC, Guarente LP (2006) Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921. https://doi.org/10.1101/gad.1467506

    Article  CAS  PubMed  Google Scholar 

  124. Alam H, Gu B, Lee MG (2015) Histone methylation modifiers in cellular signaling pathways. Cell Mol Life Sci CMLS 72:4577–4592. https://doi.org/10.1007/s00018-015-2023-y

    Article  CAS  PubMed  Google Scholar 

  125. Dimitrova E, Turberfield AH, Klose RJ (2015) Histone demethylases in chromatin biology and beyond. EMBO Rep 16:1620–1639. https://doi.org/10.15252/embr.201541113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang X, Zhu W-G (2008) Advances in histone methyltransferases and histone demethylases. Ai Zheng Aizheng Chin J Cancer 27:1018–1025

    Google Scholar 

  127. Cheng X, Collins RE, Zhang X (2005) Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct 34:267–294. https://doi.org/10.1146/annurev.biophys.34.040204.144452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kaniskan H, Martini ML, Jin J (2018) Inhibitors of protein methyltransferases and demethylases. Chem Rev 118:989–1068. https://doi.org/10.1021/acs.chemrev.6b00801

    Article  CAS  PubMed  Google Scholar 

  129. Yang Y, Hadjikyriacou A, Xia Z et al (2015) PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145. Nat Commun 6:6428. https://doi.org/10.1038/ncomms7428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang J, Jing L, Li M et al (2019) Regulation of histone arginine methylation/demethylation by methylase and demethylase. Mol Med Rep 19:3963–3971. https://doi.org/10.3892/mmr.2019.10111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Böttger A, Islam MS, Chowdhury R et al (2015) The oxygenase Jmjd6–a case study in conflicting assignments. Biochem J 468:191–202. https://doi.org/10.1042/BJ20150278

    Article  CAS  PubMed  Google Scholar 

  132. Liu G, Mattick JS, Taft RJ (2013) A meta-analysis of the genomic and transcriptomic composition of complex life. Cell Cycle Georget Tex 12:2061–2072. https://doi.org/10.4161/cc.25134

    Article  CAS  Google Scholar 

  133. Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9:e1003569. https://doi.org/10.1371/journal.pgen.1003569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Acharya S, Hartmann M, Erhardt S (2017) Chromatin-associated noncoding RNAs in development and inheritance. Wiley Interdiscip Rev RNA 8:. https://doi.org/10.1002/wrna.1435

    Article  PubMed  Google Scholar 

  135. Deveson IW, Hardwick SA, Mercer TR, Mattick JS (2017) The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome. Trends Genet 33:464–478. https://doi.org/10.1016/j.tig.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  136. Jandura A, Krause HM (2017) The new RNA world: growing evidence for long noncoding RNA functionality. Trends Genet TIG 33:665–676. https://doi.org/10.1016/j.tig.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  137. Liu H, Lei C, He Q et al (2018) Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer. https://doi.org/10.1186/s12943-018-0765-5

    Article  PubMed  PubMed Central  Google Scholar 

  138. Iorio MV, Piovan C, Croce CM (2010) Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta BBA - Gene Regul Mech 1799:694–701. https://doi.org/10.1016/j.bbagrm.2010.05.005

    Article  CAS  Google Scholar 

  139. Malumbres M (2013) miRNAs and cancer: an epigenetics view. Mol Aspects Med 34:863–874. https://doi.org/10.1016/j.mam.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  140. Wu H, Yang L, Chen L-L (2017) The diversity of long noncoding RNAs and their generation. Trends Genet 33:540–552. https://doi.org/10.1016/j.tig.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  141. Zhao Y, Li H, Fang S et al (2016) NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 44:D203–D208. https://doi.org/10.1093/nar/gkv1252

    Article  CAS  PubMed  Google Scholar 

  142. Noh JH, Kim KM, McClusky W et al (2018) Cytoplasmic functions of lncRNAs. Wiley Interdiscip Rev RNA 9:e1471. https://doi.org/10.1002/wrna.1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914. https://doi.org/10.1016/j.molcel.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li Z, Zhao W, Wang M, Zhou X (2019) The role of long noncoding RNAs in gene expression regulation. Gene Expr Profiling Cancer. https://doi.org/10.5772/intechopen.81773

    Article  Google Scholar 

  145. Aronson JK, Ferner RE (2017) Biomarkers-a general review. Curr Protoc Pharmacol. https://doi.org/10.1002/cpph.19

    Article  PubMed  Google Scholar 

  146. Fitzpatrick E, Dhawan A (2014) Noninvasive biomarkers in non-alcoholic fatty liver disease: current status and a glimpse of the future. World J Gastroenterol WJG 20:10851–10863. https://doi.org/10.3748/wjg.v20.i31.10851

    Article  CAS  PubMed  Google Scholar 

  147. Mikeska T, Craig JM (2014) DNA methylation biomarkers: cancer and beyond. Genes 5:821–864. https://doi.org/10.3390/genes5030821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Heyn H, Esteller M (2012) DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 13:679–692. https://doi.org/10.1038/nrg3270

    Article  CAS  PubMed  Google Scholar 

  149. Javierre BM, Fernandez AF, Richter J et al (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20:170–179. https://doi.org/10.1101/gr.100289.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kel A, Boyarskikh U, Stegmaier P et al (2019) Walking pathways with positive feedback loops reveal DNA methylation biomarkers of colorectal cancer. BMC Bioinformatics 20:119. https://doi.org/10.1186/s12859-019-2687-7

    Article  PubMed  PubMed Central  Google Scholar 

  151. Willmer T, Johnson R, Louw J, Pheiffer C (2018) Blood-based DNA methylation biomarkers for type 2 diabetes: potential for clinical applications. Front Endocrinol. https://doi.org/10.3389/fendo.2018.00744

    Article  Google Scholar 

  152. Guerrero-Preston R, Soudry E, Acero J et al (2011) NID2 and HOXA9 promoter hypermethylation as biomarkers for prevention and early detection in oral cavity squamous cell carcinoma tissues and saliva. Cancer Prev Res Phila Pa 4:1061–1072. https://doi.org/10.1158/1940-6207.CAPR-11-0006

    Article  CAS  Google Scholar 

  153. Rosas SL, Koch W, da Costa Carvalho MG et al (2001) Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res 61:939–942

    CAS  PubMed  Google Scholar 

  154. Bakavicius A, Daniunaite K, Zukauskaite K et al (2019) Urinary DNA methylation biomarkers for prediction of prostate cancer upgrading and upstaging. Clin Epigenetics 11:115. https://doi.org/10.1186/s13148-019-0716-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ahlquist DA, Zou H, Domanico M et al (2012) Next-generation stool DNA test accurately detects colorectal cancer and large adenomas. Gastroenterology 142:248–256. https://doi.org/10.1053/j.gastro.2011.10.031 quiz e25-26.

    Article  CAS  PubMed  Google Scholar 

  156. Gray SG (2011) Epigenetic treatment of neurological disease. Epigenomics 3:431–450. https://doi.org/10.2217/epi.11.67

    Article  CAS  PubMed  Google Scholar 

  157. Hake SB, Xiao A, Allis CD (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer 90:761–769. https://doi.org/10.1038/sj.bjc.6601575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Holdenrieder S, Stieber P (2009) Clinical use of circulating nucleosomes. Crit Rev Clin Lab Sci 46:1–24. https://doi.org/10.1080/10408360802485875

    Article  CAS  PubMed  Google Scholar 

  159. Deligezer U, Akisik EZ, Akisik EE et al (2010) H3K9me3/H4K20me3 ratio in circulating nucleosomes as potential biomarker for colorectal cancer. Circ Nucleic Acids Plasma Serum. https://doi.org/10.1007/978-90-481-9382-0_14

    Article  Google Scholar 

  160. Haemmig S, Simion V, Yang D et al (2017) Long noncoding RNAs in cardiovascular pathology, diagnosis, and therapy. Curr Opin Cardiol 32:776–783. https://doi.org/10.1097/HCO.0000000000000454

    Article  PubMed  PubMed Central  Google Scholar 

  161. Huang W (2017) MicroRNAs: biomarkers, diagnostics, and therapeutics. Methods Mol Biol Clifton NJ 1617:57–67. https://doi.org/10.1007/978-1-4939-7046-9_4

    Article  CAS  Google Scholar 

  162. Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21:1253–1261. https://doi.org/10.1038/nm.3981

    Article  CAS  PubMed  Google Scholar 

  163. Bolha L, Ravnik-Glavač M, Glavač D (2017) Long noncoding RNAs as biomarkers in cancer. Dis Markers. https://doi.org/10.1155/2017/7243968

    Article  PubMed  PubMed Central  Google Scholar 

  164. Wang Y, Li Y, Wang X et al (2013) Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia 56:2275–2285. https://doi.org/10.1007/s00125-013-2996-8

    Article  CAS  PubMed  Google Scholar 

  165. Hu G, Drescher KM, Chen X-M (2012) Exosomal miRNAs: biological properties and therapeutic potential. Front Genet. https://doi.org/10.3389/fgene.2012.00056

    Article  PubMed  PubMed Central  Google Scholar 

  166. Zandberga E, Kozirovskis V, Ābols A et al (2013) Cell-free microRNAs as diagnostic, prognostic, and predictive biomarkers for lung cancer. Genes Chromosomes Cancer 52:356–369. https://doi.org/10.1002/gcc.22032

    Article  CAS  PubMed  Google Scholar 

  167. Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  168. Olkhov-Mitsel E, Bapat B (2012) Strategies for discovery and validation of methylated and hydroxymethylated DNA biomarkers. Cancer Med 1:237–260. https://doi.org/10.1002/cam4.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sant KE, Goodrich JM (2019) Methods for analysis of DNA methylation. In: McCullough SD, Dolinoy DC (eds) Toxicoepigenetics. Academic Press, London, pp 347–377

    Chapter  Google Scholar 

  170. Shen L, Waterland RA (2007) Methods of DNA methylation analysis. Curr Opin Clin Nutr Metab Care 10:576–581. https://doi.org/10.1097/MCO.0b013e3282bf6f43

    Article  CAS  PubMed  Google Scholar 

  171. Shechter D, Dormann HL, Allis CD, Hake SB (2007) Extraction, purification and analysis of histones. Nat Protoc 2:1445–1457. https://doi.org/10.1038/nprot.2007.202

    Article  CAS  PubMed  Google Scholar 

  172. Rodriguez-Collazo P, Leuba SH, Zlatanova J (2009) Robust methods for purification of histones from cultured mammalian cells with the preservation of their native modifications. Nucleic Acids Res 37:e81. https://doi.org/10.1093/nar/gkp273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lai F, Blumenthal E, Shiekhattar R (2016) Detection and analysis of long noncoding RNAs. Methods Enzymol 573:421–444. https://doi.org/10.1016/bs.mie.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  174. Jathar S, Kumar V, Srivastava J, Tripathi V (2017) Technological developments in lncRNA biology. Adv Exp Med Biol 1008:283–323. https://doi.org/10.1007/978-981-10-5203-3_10

    Article  CAS  PubMed  Google Scholar 

  175. Dangwal S, Schimmel K, Foinquinos A et al (2017) Noncoding RNAs in heart failure. Handb Exp Pharmacol 243:423–445. https://doi.org/10.1007/164_2016_99

    Article  CAS  PubMed  Google Scholar 

  176. Albuquerque D, Stice E, Rodríguez-López R et al (2015) Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol Genet Genomics MGG 290:1191–1221. https://doi.org/10.1007/s00438-015-1015-9

    Article  CAS  PubMed  Google Scholar 

  177. Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495. https://doi.org/10.1038/sj.onc.1205699

    Article  CAS  PubMed  Google Scholar 

  178. Karahoca M, Momparler RL (2013) Pharmacokinetic and pharmacodynamic analysis of 5-aza-2’-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenetics 5:3. https://doi.org/10.1186/1868-7083-5-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Marcucci G, Silverman L, Eller M et al (2005) Bioavailability of azacitidine subcutaneous versus intravenous in patients with the myelodysplastic syndromes. J Clin Pharmacol 45:597–602. https://doi.org/10.1177/0091270004271947

    Article  CAS  PubMed  Google Scholar 

  180. Thottassery JV, Sambandam V, Allan PW et al (2014) Novel DNA methyltransferase-1 (DNMT1) depleting anticancer nucleosides, 4’-thio-2’-deoxycytidine and 5-aza-4’-thio-2’-deoxycytidine. Cancer Chemother Pharmacol 74:291–302. https://doi.org/10.1007/s00280-014-2503-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Issa J-PJ, Roboz G, Rizzieri D et al (2015) Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol 16:1099–1110. https://doi.org/10.1016/S1470-2045(15)00038-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30. https://doi.org/10.1016/j.ccr.2010.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Tian S, Lei I, Gao W et al (2019) HDAC inhibitor valproic acid protects heart function through Foxm1 pathway after acute myocardial infarction. EBioMedicine 39:83–94. https://doi.org/10.1016/j.ebiom.2018.12.003

    Article  PubMed  Google Scholar 

  184. Zhang L, Zhang J, Jiang Q et al (2018) Zinc binding groups for histone deacetylase inhibitors. J Enzyme Inhib Med Chem 33:714–721. https://doi.org/10.1080/14756366.2017.1417274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Luense S, Denner P, Fernández-Montalván A et al (2015) Quantification of histone H3 Lys27 trimethylation (H3K27me3) by high-throughput microscopy enables cellular large-scale screening for small-molecule EZH2 inhibitors. J Biomol Screen 20:190–201. https://doi.org/10.1177/1087057114559668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Stein EM, Garcia-Manero G, Rizzieri DA et al (2018) The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131:2661–2669. https://doi.org/10.1182/blood-2017-12-818948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Schenk T, Chen WC, Göllner S et al (2012) Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med 18:605–611. https://doi.org/10.1038/nm.2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Baumann V, Winkler J (2014) miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem 6:1967–1984. https://doi.org/10.4155/fmc.14.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  190. Bajan S, Hutvagner G (2020) RNA-based therapeutics: from antisense oligonucleotides to miRNAs. Cells. https://doi.org/10.3390/cells9010137

    Article  PubMed  PubMed Central  Google Scholar 

  191. Chery J (2016) RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J J Postdr Res Postdr Aff 4:35–50. https://doi.org/10.14304/surya.jpr.v4n7.5

    Article  Google Scholar 

  192. Di Fusco D, Dinallo V, Marafini I et al (2019) Antisense oligonucleotide: basic concepts and therapeutic application in inflammatory bowel disease. Front Pharmacol. https://doi.org/10.3389/fphar.2019.00305

    Article  PubMed  PubMed Central  Google Scholar 

  193. Lima JF, Cerqueira L, Figueiredo C et al (2018) Anti-miRNA oligonucleotides:a comprehensive guide for design. RNA Biol 15:338–352. https://doi.org/10.1080/15476286.2018.1445959

    Article  PubMed  PubMed Central  Google Scholar 

  194. Walayat A, Yang M, Xiao D (2018) Therapeutic implication of miRNA in human disease. Antisense Ther. https://doi.org/10.5772/intechopen.82738

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Universidade Federal de Ouro Preto (UFOP) for PhD Scholarship of Daiane T. Oliveira.

Funding

This study has not funding received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiane Teixeira de Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, D.T., Guerra-Sá, R. Uncovering epigenetic landscape: a new path for biomarkers identification and drug development. Mol Biol Rep 47, 9097–9122 (2020). https://doi.org/10.1007/s11033-020-05916-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05916-3

Keywords

Navigation