Skip to main content

Advertisement

Log in

An integrative approach to cisplatin chronic toxicities in mice reveals importance of organic cation-transporter-dependent protein networks for renoprotection

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cisplatin (CDDP) is one of the most important chemotherapeutic drugs in modern oncology. However, its use is limited by severe toxicities, which impair life quality after cancer. Here, we investigated the role of organic cation transporters (OCT) in mediating toxicities associated with chronic (twice the week for 4 weeks) low-dose (4 mg/kg body weight) CDDP treatment (resembling therapeutic protocols in patients) of wild-type (WT) mice and mice with OCT genetic deletion (OCT1/2−/−). Functional and molecular analysis showed that OCT1/2−/− mice are partially protected from CDDP-induced nephrotoxicity and peripheral neurotoxicity, whereas ototoxicity was not detectable. Surprisingly, proteomic analysis of the kidneys demonstrated that genetic deletion of OCT1/2 itself was associated with significant changes in expression of proinflammatory and profibrotic proteins which are part of an OCT-associated protein network. This signature directly regulated by OCT consisted of three classes of proteins, viz., profibrotic proteins, proinflammatory proteins, and nutrient sensing molecules. Consistent with functional protection, CDDP-induced proteome changes were more severe in WT mice than in OCT1/2−/− mice. Laser ablation-inductively coupled plasma-mass spectrometry analysis demonstrated that the presence of OCT was not associated with higher renal platinum concentrations. Taken together, these results redefine the role of OCT from passive membrane transporters to active modulators of cell signaling in the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albers JW, Chaudhry V, Cavaletti G, Donehower RC (2011) Interventions for preventing neuropathy caused by cisplatin andrelated compounds. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005228.pub3

    Article  PubMed  Google Scholar 

  • Bartram MP, Habbig S, Pahmeyer C, Hohne M, Weber LT, Thiele H, Altmuller J et al (2016) Three-layered proteomic characterization of a novel ACTN4 mutation unravels its pathogenic potential in FSGS. Hum Mol Genet 25:1152–1164

    Article  CAS  PubMed  Google Scholar 

  • Carozzi VA, Canta A, Oggioni N, Sala B, Chiorazzi A, Meregalli C, Bossi M et al (2010) Neurophysiological and neuropathological characterization of new murine models of chemotherapy-induced chronic peripheral neuropathies. Exp Neurol 226:301–309

    Article  CAS  PubMed  Google Scholar 

  • Ciarimboli G (2011) Role of organic cation transporters in drug-induced toxicity. Expert Opin Drug Metab Toxicol 7:159–174

    Article  PubMed  Google Scholar 

  • Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, Pavenstädt H et al (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176:1169–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Mann M (2012) 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinform 13:S12

    Article  CAS  Google Scholar 

  • Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Einhorn LH (2002) Curing metastatic testicular cancer. Proc Natl Acad Sci USA 99:4592–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuertes MA, Alonso C, Perez JM (2003) Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 103:645–662

    Article  CAS  PubMed  Google Scholar 

  • Gage GJ, Kipke DR, Shain W (2012) Whole animal perfusion fixation for rodents. J Vis Exp. https://doi.org/10.3791/3564

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardie NA, MacDonald G, Rubel EW (2004) A new method for imaging and 3D reconstruction of mammalian cochlea by fluorescent confocal microscopy. Brain Res 1000:200–210

    Article  CAS  PubMed  Google Scholar 

  • Harrach S, Ciarimboli G (2015) Role of transporters in the distribution of platinum-based drugs. Front Pharmacol 6:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holle SK, Ciarimboli G, Edemir B, Neugebauer U, Pavenstädt H, Schlatter E (2011) Properties and regulation of organic cation transport in freshly isolated mouse proximal tubules analyzed with a fluorescence reader-based method. Pflugers Arch 462:359–369

    Article  CAS  PubMed  Google Scholar 

  • Houjou T, Nakano K, Ike O, Wada H, Hitomi S, Shinmi Y, Danno N et al (1996) Oral sustained-release cisplatin capsule. J Pharm Pharmacol 48:474–478

    Article  CAS  PubMed  Google Scholar 

  • Hucke A, Ciarimboli G (2016) The role of transporters in the toxicity of chemotherapeutic drugs: focus on transporters for organic cations. J Clin Pharmacol 56(Suppl 7):S157–S172

    Article  CAS  PubMed  Google Scholar 

  • Iglesias JM, Morgan RO, Jenkins NA, Copeland NG, Gilbert DJ, Fernandez MP (2002) Comparative genetics and evolution of annexin A13 as the founder gene of vertebrate annexins. Mol Biol Evol 19:608–618

    Article  CAS  PubMed  Google Scholar 

  • Jacobs C, Coleman CN, Rich L, Hirst K, Weiner MW (1984) Inhibition of cis-diamminedichloroplatinum secretion by the human kidney with probenecid. Cancer Res 44:3632–3635

    CAS  PubMed  Google Scholar 

  • Jamesdaniel S (2014) Downstream targets of Lmo4 are modulated by cisplatin in the inner ear of Wistar rats. PLoS One 9:e115263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonker JW, Wagenaar E, Van Eijl S, Schinkel AH (2003) Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol 23:7902–7908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köppen C, Reifschneider O, Castanheira I, Sperling M, Karst U, Ciarimboli G (2015) Quantitative imaging of platinum based on laser ablation-inductively coupled plasma-mass spectrometry to investigate toxic side effects of cisplatin. Metallomics 7:1595–1603

    Article  CAS  PubMed  Google Scholar 

  • Lanvers-Kaminsky C, Sprowl JA, Malath I, Deuster D, Eveslage M, Schlatter E, Mathijssen RH et al (2015) Human OCT2 variant c.808G > T confers protection effect against cisplatin-induced ototoxicity. Pharmacogenomics 16:323–332

    Article  CAS  PubMed  Google Scholar 

  • Lariviere R, Gauthier-Bastien A, Ung RV, St-Hilaire J, Mac-Way F, Richard DE, Agharazii M (2017) Endothelin type A receptor blockade reduces vascular calcification and inflammation in rats with chronic kidney disease. J Hypertens 35:376–384

    Article  CAS  PubMed  Google Scholar 

  • Latcha S, Jaimes EA, Patil S, Glezerman IG, Mehta S, Flombaum CD (2016) Long-term renal outcomes after cisplatin treatment. Clin J Am Soc Nephrol 11:1173–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau AH (1999) Apoptosis induced by cisplatin nephrotoxic injury. Kidney Int 56:1295–1298

    Article  CAS  PubMed  Google Scholar 

  • Li J, Xu Z, Jiang L, Mao J, Zeng Z, Fang L, He W et al (2014) Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury. Kidney Int 86:86–102

    Article  CAS  PubMed  Google Scholar 

  • Liang ZD, Long Y, Tsai WB, Fu S, Kurzrock R, Gagea-Iurascu M, Zhang F et al (2012) Mechanistic basis for overcoming platinum resistance using copper chelating agents. Mol Cancer Ther 11:2483–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JJ, Jamieson SM, Subramaniam J, Ip V, Jong NN, Mercer JF, McKeage MJ (2009) Neuronal expression of copper transporter 1 in rat dorsal root ganglia: association with platinum neurotoxicity. Cancer Chemother Pharmacol 64:847–856

    Article  CAS  PubMed  Google Scholar 

  • Marmiroli P, Riva B, Pozzi E, Ballarini E, Lim D, Chiorazzi A, Meregalli C et al (2017) Susceptibility of different mouse strains to oxaliplatin peripheral neurotoxicity: phenotypic and genotypic insights. PLoS One 12:e0186250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui KI (2010) Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem Pharmacol 80:1762–1767

    Article  CAS  PubMed  Google Scholar 

  • Pepper RJ, Wang HH, Rajakaruna GK, Papakrivopoulou E, Vogl T, Pusey CD, Cook HT et al (2015) S100A8/A9 (calprotectin) is critical for development of glomerulonephritis and promotes inflammatory leukocyte-renal cell interactions. Am J Pathol 185:1264–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phanish MK, Wahab NA, Colville-Nash P, Hendry BM, Dockrell ME (2006) The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbeta1 responses in human proximal-tubule epithelial cells. Biochem J 393:601–607

    Article  CAS  PubMed  Google Scholar 

  • Qian C, Johs A, Chen H, Mann BF, Lu X, Abraham PE, Hettich RL et al (2016) Global proteome response to deletion of genes related to mercury methylation and dissimilatory metal reduction reveals changes in respiratory metabolism in geobacter sulfurreducens PCA. J Proteome Res 15:3540–3549

    Article  CAS  PubMed  Google Scholar 

  • Rabik CA, Dolan ME (2007) Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 33:9–23

    Article  CAS  PubMed  Google Scholar 

  • Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663–670

    Article  CAS  PubMed  Google Scholar 

  • Reifschneider O, Wehe CA, Raj I, Ehmcke J, Ciarimboli G, Sperling M, Karst U (2013) Quantitative bioimaging of platinum in polymer embedded mouse organs using laser ablation ICP-MS. Metallomics 5:1440–1447

    Article  CAS  PubMed  Google Scholar 

  • Rinschen MM, Bharill P, Wu X, Kohli P, Reinert MJ, Kretz O, Saez I et al (2016) The ubiquitin ligase Ubr4 controls stability of podocin/MEC-2 supercomplexes. Hum Mol Genet 25:1328–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rybak LP, Ramkumar V (2007) Ototoxicity. Kidney Int 72:931–935

    Article  CAS  PubMed  Google Scholar 

  • Sharp CN, Siskind LJ (2017) Developing better mouse models to study cisplatin-induced kidney injury. Am J Physiol Renal Physiol 313:F835–F841

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprowl JA, Ciarimboli G, Lancaster CS, Giovinazzo H, Gibson AA, Du G, Janke LJ et al (2013) Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2. Proc Natl Acad Sci USA 110:11199–11204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740

    Article  CAS  PubMed  Google Scholar 

  • Vizcaino JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D, Dianes JA et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizcaino JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G et al (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44:D447–D456

    Article  CAS  PubMed  Google Scholar 

  • Vogel GF, Ebner HL, de Araujo ME, Schmiedinger T, Eiter O, Pircher H, Gutleben K et al (2015) Ultrastructural morphometry points to a new role for LAMTOR2 in regulating the endo/lysosomal system. Traffic 16:617–634

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Duan L, Zhou B, Ma R, Zhou H, Liu Z (2012) Genetic polymorphism of copper transporter protein 1 is related to platinum resistance in Chinese non-small cell lung carcinoma patients. Clin Exp Pharmacol Physiol 39:786–792

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115–124

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr Massimo Zucchetti from the Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy, for the platinum determination in neuronal tissues. This study was supported by the Deutsche Forschungsgemeinschaft (CI 107/11-1 to MMR, AaZD, and GiC), and in part by National Institutes of Health grants (R01CA215802 to AS), and for the neurotoxicity part by a research grant from “Fondazione Banca del Monte di Lombardia” to PM.

Author information

Authors and Affiliations

Authors

Contributions

Planned the study: UK, MS, GuC, StS, ES, HP, AS, AaZD, and GiC. Performed the experiments: AH, MMR, OBB, CK, KS, RS, CC, AlC, AnC, SaS, PM, VB, AK, DD, and GiC. Performed histological analysis: BH and VVM. Wrote the manuscript: UK, GuC, CC, HP, AS, AaZD, and GiC.

Corresponding author

Correspondence to Giuliano Ciarimboli.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interests exists.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

204_2019_2557_MOESM1_ESM.docx

This chapter contains technical details of experiments. Moreover, the body weight of the mice during the experiments (suppl. Material Fig. 1), a part of results of histopathological analysis of the kidney (suppl. Material Fig. 2), T-cells infiltration into the kidneys (suppl. Material Fig. 3), and the Pt content of different tissues (suppl. Material Fig. 4) are also shown. This section contains also the primer sequences (suppl. Material Table 1), and the detailed results of proteomic analysis (suppl. Material Table 2). (DOCX 7968 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hucke, A., Rinschen, M.M., Bauer, O.B. et al. An integrative approach to cisplatin chronic toxicities in mice reveals importance of organic cation-transporter-dependent protein networks for renoprotection. Arch Toxicol 93, 2835–2848 (2019). https://doi.org/10.1007/s00204-019-02557-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02557-9

Keywords

Navigation