Skip to main content

Advertisement

Log in

Neuronal expression of copper transporter 1 in rat dorsal root ganglia: association with platinum neurotoxicity

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

We report the neuronal expression of copper transporter 1 (CTR1) in rat dorsal root ganglia (DRG) and its association with the neurotoxicity of platinum-based drugs.

Methods

CTR1 expression was studied by immunohistochemistry and RT-PCR. The toxicity of platinum drugs to CTR1-positive and CTR1-negative neurons was compared in DRG from animals treated with maximum tolerated doses of oxaliplatin (1.85 mg/kg), cisplatin (1 mg/kg) or carboplatin (8 mg/kg) twice weekly for 8 weeks.

Results

Abundant CTR1 mRNA was detected in DRG tissue. CTR1 immunoreactivity was associated with plasma membranes and cytoplasmic vesicular structures of a subpopulation (13.6 ± 3.1%) of mainly large-sized (mean cell body area, 1,787 ± 127 μm2) DRG neurons. After treatment with platinum drugs, the cell bodies of these CTR1-positive neurons became atrophied, with oxaliplatin causing the greatest percentage reduction in the mean cell body area relative to controls (42%; P < 0.05), followed by cisplatin (18%; P < 0.05) and carboplatin causing the least reduction (3.2%; P = NS). CTR1-negative neurons, with no immunoreactivity or only diffuse cytoplasmic staining, showed less treatment-induced cell body atrophy than CTR1-positive neurons.

Conclusions

CTR1 is preferentially expressed by a subset of DRG neurons that are particularly vulnerable to the toxicity of platinum drugs. These findings, together with its neuronal membrane localization, are suggestive of CTR1-related mechanisms of platinum drug neuronal uptake and neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Quasthoff S, Hartung HP (2002) Chemotherapy-induced peripheral neuropathy. J Neurol 249:9–17

    Article  PubMed  CAS  Google Scholar 

  2. Grothey A (2003) Oxaliplatin-safety profile: neurotoxicity. Semin Oncol 30:5–13

    Article  PubMed  CAS  Google Scholar 

  3. Mollman JE (1990) Cisplatin neurotoxicity. N Engl J Med 322:126–127

    Article  PubMed  CAS  Google Scholar 

  4. McKeage MJ (1995) Comparative adverse effect profiles of platinum drugs. Drug Saf 13:228–244

    Article  PubMed  CAS  Google Scholar 

  5. Screnci D, McKeage MJ (1999) Platinum neurotoxicity: clinical profiles, experimental models and neuroprotective approaches. J Inorg Biochem 77:105–110

    Article  PubMed  CAS  Google Scholar 

  6. van der Gerritsen Hoop R, van der Burg MEL, ten Bokkel Huinink WW et al (1990) Incidence of neuropathy in 395 patients with ovarian cancer treated with or without cisplatin. Cancer 66:1697–1702

    Article  Google Scholar 

  7. Machover D, Diaz-Rubio E, de Gramont A et al (1996) Two consecutive phase II studies of oxaliplatin (L-OHP) for treatment of patients with advanced colorectal carcinoma who were resistant to previous treatment with fluoropyrimidines. Ann Oncol 7:95–98

    PubMed  CAS  Google Scholar 

  8. Canetta R, Rozencweig M, Carter SK (1985) Carboplatin: the clinical spectrum to date. Cancer Treat Rev 12(Suppl A):125–136

    Article  PubMed  Google Scholar 

  9. Albers J, Chaudhry V, Cavaletti G et al (2007) Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst Rev CD005228

  10. Daugaard GK, Petrera J, Trojaborg W (1987) Electrophysiological study of the peripheral and central neurotoxic effect of cis-platin. Acta Neurol Scand 76:86–93

    Article  PubMed  CAS  Google Scholar 

  11. Thompson SW, Davis LE, Kornfeld M et al (1984) Cisplatin neuropathy: clinical, electrophysiologic, morphologic, and toxicologic studies. Cancer 54:1269–1279

    Article  PubMed  CAS  Google Scholar 

  12. Krarup-Hansen A, Helweg-Larsen S, Schmalbruch H et al (2007) Neuronal involvement in cisplatin neuropathy: prospective clinical and neurophysiological studies. Brain 130:1076–1088

    Article  PubMed  CAS  Google Scholar 

  13. Roelofs RI, Hrushesky W, Rogin J et al (1984) Peripheral sensory neuropathy and cisplatin chemotherapy. Neurology 34:934–938

    PubMed  CAS  Google Scholar 

  14. Krarup-Hansen A, Rietz B, Krarup C et al (1999) Histology and platinum content of sensory ganglia and sural nerves in patients treated with cisplatin and carboplatin: an autopsy study. Neuropathol Appl Neurobiol 25:29–40

    Article  PubMed  CAS  Google Scholar 

  15. Cavaletti G, Tredici G, Petruccioli MG et al (2001) Effects of different schedules of oxaliplatin treatment on the peripheral nervous system of the rat. Eur J Cancer 37:2457–2463

    Article  PubMed  CAS  Google Scholar 

  16. Holmes J, Stanko J, Varchenko M et al (1998) Comparative neurotoxicity of oxaliplatin, cisplatin, and ormaplatin in a Wistar rat model. Toxicol Sci 46:342–351

    PubMed  CAS  Google Scholar 

  17. McKeage MJ, Hsu T, Screnci D et al (2001) Nuclear damage correlates with neurotoxicity induced by different platinum drugs. Br J Cancer 85:1219–1225

    Article  PubMed  CAS  Google Scholar 

  18. Jamieson SM, Liu J, Connor B et al (2005) Oxaliplatin causes selective atrophy of a subpopulation of dorsal root ganglion neurons without inducing cell loss. Cancer Chemother Pharmacol 56:391–399

    Article  PubMed  CAS  Google Scholar 

  19. Tomiwa K, Nolan C, Cavanagh JB (1986) The effects of cisplatin on rat spinal ganglia: a study by light and electron microscopy and by morphometry. Acta Neuropathol 69:295–308

    Article  PubMed  CAS  Google Scholar 

  20. Cavaletti G, Tredici G, Marmiroli P et al (1992) Morphometric study of the sensory neuron and peripheral nerve changes induced by chronic cisplatin (DDP) administration in rats. Acta Neuropathol 84:364–371

    Article  PubMed  CAS  Google Scholar 

  21. Cavaletti G, Fabbrica D, Minoia C et al (1998) Carboplatin toxic effects on the peripheral nervous system of the rat. Ann Oncol 9:443–447

    Article  PubMed  CAS  Google Scholar 

  22. Gregg RW, Molepo JM, Monpetit VJ et al (1992) Cisplatin neurotoxicity: the relationship between dosage, time, and platinum concentration in neurologic tissues, and morphologic evidence of toxicity. J Clin Oncol 10:795–803

    PubMed  CAS  Google Scholar 

  23. Screnci D, McKeage MJ, Galettis P et al (2000) Relationships between hydrophobicity, reactivity, accumulation and peripheral nerve toxicity of a series of platinum drugs. Br J Cancer 82:966–972

    Article  PubMed  CAS  Google Scholar 

  24. Cavaletti G, Tredici G, Pizzini G et al (1990) Tissue platinum concentrations and cisplatin schedules. Lancet 336:1003

    Article  PubMed  CAS  Google Scholar 

  25. Screnci D, Er HM, Hambley TW et al (1997) Stereoselective peripheral sensory neurotoxicity of diaminocyclohexane platinum enantiomers related to ormaplatin and oxaliplatin. Br J Cancer 76:502–510

    PubMed  CAS  Google Scholar 

  26. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    Article  PubMed  CAS  Google Scholar 

  27. McDonald ES, Randon KR, Knight A et al (2005) Cisplatin preferentially binds to DNA in dorsal root ganglion neurons in vitro and in vivo: a potential mechanism for neurotoxicity. Neurobiol Dis 18:305–313

    Article  PubMed  CAS  Google Scholar 

  28. Meijer C, de Vries EG, Marmiroli P et al (1999) Cisplatin-induced DNA-platination in experimental dorsal root ganglia neuronopathy. Neurotoxicology 20:883–887

    PubMed  CAS  Google Scholar 

  29. Ta LE, Espeset L, Podratz J et al (2006) Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum-DNA binding. Neurotoxicology 27:992–1002

    Article  PubMed  CAS  Google Scholar 

  30. Dzagnidze A, Katsarava Z, Makhalova J et al (2007) Repair capacity for platinum-DNA adducts determines the severity of cisplatin-induced peripheral neuropathy. J Neurosci 27:9451–9457

    Article  PubMed  CAS  Google Scholar 

  31. Zhou B, Gitschier J (1997) hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci USA 94:7481–7486

    Article  PubMed  CAS  Google Scholar 

  32. Lee J, Petris MJ, Thiele DJ (2002) Characterization of mouse embryonic cells deficient in the ctr1 high affinity copper transporter. Identification of a Ctr1-independent copper transport system. J Biol Chem 277:40253–40259

    Article  PubMed  CAS  Google Scholar 

  33. Ishida S, Lee J, Thiele DJ et al (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99:14298–14302

    Article  PubMed  CAS  Google Scholar 

  34. Lin X, Okuda T, Holzer A et al (2002) The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol Pharmacol 62:1154–1159

    Article  PubMed  CAS  Google Scholar 

  35. Holzer AK, Manorek GH, Howell SB (2006) Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin. Mol Pharmacol 70:1390–1394

    Article  PubMed  CAS  Google Scholar 

  36. Song IS, Savaraj N, Siddik ZH et al (2004) Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol Cancer Ther 2004:1543–1549

    Google Scholar 

  37. Holzer AK, Varki NM, Le QT et al (2006) Expression of the human copper influx transporter 1 in normal and malignant human tissues. J Histochem Cytochem 54:1041–1049

    Article  PubMed  CAS  Google Scholar 

  38. Lee J, Prohaska JR, Dagenais SL et al (2000) Isolation of a murine copper transporter gene, tissue specific expression and functional complementation of a yeast copper transport mutant. Gene 254:87–96

    Article  PubMed  CAS  Google Scholar 

  39. Kuo YM, Zhou B, Cosco D et al (2001) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci USA 98:6836–6841

    Article  PubMed  CAS  Google Scholar 

  40. Karmy G, Carr PA, Yamamoto T et al (1991) Cytochrome oxidase immunohistochemistry in rat brain and dorsal root ganglia: visualization of enzyme in neuronal perikarya and in parvalbumin-positive neurons. Neuroscience 40:825–839

    Article  PubMed  CAS  Google Scholar 

  41. Rosenfeld JCS, James R (1997) Expression of superoxide dismutase following axotomy. Exp Neurol 147:37–47

    Article  PubMed  CAS  Google Scholar 

  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-rrCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  43. Bergman E, Ulfhake B (1998) Loss of primary sensory neurons in the very old rat: neuron number estimates using the disector method and confocal optical sectioning. J Comp Neurol 396:211–222

    Article  PubMed  CAS  Google Scholar 

  44. Lawson SN, Harper AA, Harper EI et al (1984) A monoclonal antibody against neurofilament protein specifically labels a subpopulation of rat sensory neurones. J Compar Neurol 228:263–272

    Article  CAS  Google Scholar 

  45. Lee J, Prohaska JR, Thiele DJ (2001) Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci USA 98:6842–6847

    Article  PubMed  CAS  Google Scholar 

  46. Holzer AK, Katano K, Klomp LW et al (2004) Cisplatin rapidly down-regulates its own influx transporter hCTR1 in cultured human ovarian carcinoma cells. Clin Cancer Res 10:6744–6749

    Article  PubMed  CAS  Google Scholar 

  47. Holzer AK, Howell SB (2006) The internalization and degradation of human copper transporter 1 following cisplatin exposure. Cancer Res 66:10944–10952

    Article  PubMed  CAS  Google Scholar 

  48. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230

    Article  PubMed  CAS  Google Scholar 

  49. Samimi G, Katano K, Holzer AK et al (2004) Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exporters ATP7A and ATP7B. Mol Pharmacol 66:25–32

    Article  PubMed  CAS  Google Scholar 

  50. Komatsu M, Sumizawa T, Mutoh M et al (2000) Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res 60:1312–1316

    PubMed  CAS  Google Scholar 

  51. Samimi G, Safaei R, Katano K et al (2004) Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res 10:4661–4669

    Article  PubMed  CAS  Google Scholar 

  52. Yonezawa A, Masuda S, Yokoo S et al (2006) Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1–3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther 319:879–886

    Article  PubMed  CAS  Google Scholar 

  53. Zhang S, Lovejoy KS, Shima JE et al (2006) Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res 66:8847–8857

    Article  PubMed  CAS  Google Scholar 

  54. Taniguchi K, Wada M, Kohno K et al (1996) A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res 56:4124–4129

    PubMed  CAS  Google Scholar 

  55. Ishikawa T, Ali-Osman F (1993) Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J Biol Chem 268:20116–20125

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by a research grant of Cancer Society of New Zealand.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. McKeage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J.J., Jamieson, S.M.F., Subramaniam, J. et al. Neuronal expression of copper transporter 1 in rat dorsal root ganglia: association with platinum neurotoxicity. Cancer Chemother Pharmacol 64, 847–856 (2009). https://doi.org/10.1007/s00280-009-1017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1017-6

Keywords

Navigation