Skip to main content
Log in

Biophysical and biomechanical properties of neural progenitor cells as indicators of developmental neurotoxicity

  • Reproductive Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Conventional in vitro toxicity studies have focused on identifying IC50 and the underlying mechanisms, but how toxicants influence biophysical and biomechanical changes in human cells, especially during developmental stages, remain understudied. Here, using an atomic force microscope, we characterized changes in biophysical (cell area, actin organization) and biomechanical (Young’s modulus, force of adhesion, tether force, membrane tension, tether radius) aspects of human fetal brain-derived neural progenitor cells (NPCs) induced by four classes of widely used toxic compounds, including rotenone, digoxin, N-arachidonoylethanolamide (AEA), and chlorpyrifos, under exposure up to 36 h. The sub-cellular mechanisms (apoptosis, mitochondria membrane potential, DNA damage, glutathione levels) by which these toxicants induced biochemical changes in NPCs were assessed. Results suggest a significant compromise in cell viability with increasing toxicant concentration (p < 0.01), and biophysical and biomechanical characteristics with increasing exposure time (p < 0.01) as well as toxicant concentration (p < 0.01). Impairment of mitochondrial membrane potential appears to be the most sensitive mechanism of neurotoxicity for rotenone, AEA and chlorpyrifos exposure, but compromise in plasma membrane integrity for digoxin exposure. The surviving NPCs remarkably retained stemness (SOX2 expression) even at high toxicant concentrations. A negative linear correlation (R2 = 0.92) exists between the elastic modulus of surviving cells and the number of living cells in that environment. We propose that even subtle compromise in cell mechanics could serve as a crucial marker of developmental neurotoxicity (mechanotoxicology) and therefore should be included as part of toxicology assessment repertoire to characterize as well as predict developmental outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexopoulos EC (2010) Introduction to multivariate regression analysis. Hippokratia 14(Suppl 1):23–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angely C, Nguyen NM, Planus E et al (2017) Exposure to Bordetella pertussis adenylate cyclase toxin affects integrin-mediated adhesion and mechanics in alveolar epithelial cells. Biol Cell 109(8):293–311

    CAS  Google Scholar 

  • Arispe N, Diaz JC, Simakova O, Pollard HB (2008) Heart failure drug digitoxin induces calcium uptake into cells by forming transmembrane calcium channels. Proc Natl Acad Sci USA 105(7):2610–2615

    CAS  Google Scholar 

  • Bal-Price AK, Hogberg HT, Buzanska L, Lenas P, van Vliet E, Hartung T (2010) In vitro developmental neurotoxicity (DNT) testing: relevant models and endpoints. Neurotoxicology 31(5):545–554

    CAS  Google Scholar 

  • Barnes JM, Przybyla L, Weaver VM (2017) Tissue mechanics regulate brain development, homeostasis and disease. J Cell Sci 130(1):71–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bjorling-Poulsen M, Andersen HR, Grandjean P (2008) Potential developmental neurotoxicity of pesticides used in Europe. Environ Health 7:50

    PubMed  PubMed Central  Google Scholar 

  • Burke RD, Todd SW, Lumsden E et al (2017) Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms. J Neurochem 142(Suppl 2):162–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cernak I, Vink R, Natale J et al (2004) The “dark side” of endocannabinoids: a neurotoxic role for anandamide. J Cereb Blood Flow Metab 24:564–578

    CAS  Google Scholar 

  • Contassot E, Tenan M, Schnuriger V, Pelte MF, Dietrich PY (2004a) Arachidonyl ethanolamide induces apoptosis of uterine cervix cancer cells via aberrantly expressed vanilloid receptor-1. Gynecol Oncol 93(1):182–188

    CAS  Google Scholar 

  • Contassot E, Wilmotte R, Tenan M et al (2004b) Arachidonylethanolamide induces apoptosis of human glioma cells through vanilloid receptor-1. J Neuropathol Exp Neurol 63(9):956–963

    CAS  Google Scholar 

  • Diz-Munoz A, Krieg M, Bergert M et al (2010) Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biol 8(11):e1000544

    PubMed  PubMed Central  Google Scholar 

  • Diz-Munoz A, Fletcher DA, Weiner OD (2013) Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol 23(2):47–53

    CAS  Google Scholar 

  • Dubovicky M, Kovacovsky P, Ujhazy E, Navarova J, Brucknerova I, Mach M (2008) Evaluation of developmental neurotoxicity: some important issues focused on neurobehavioral development. Interdiscip Toxicol 1(3–4):206–210

    PubMed  PubMed Central  Google Scholar 

  • Eaton DL, Daroff RB, Autrup H et al (2008) Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit Rev Toxicol 38:1–125

    CAS  Google Scholar 

  • Ebert AD, Liang P, Wu JC (2012) Induced pluripotent stem cells as a disease modeling and drug screening platform. J Cardiovasc Pharmacol 60(4):408–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraczkowska K, Bacia M, Przybyło M et al (2018) Alterations of biomechanics in cancer and normal cells induced by doxorubicin. Biomed Pharmacother 97:1195–1203

    CAS  Google Scholar 

  • Franze K (2013) The mechanical control of nervous system development. Development 140(15):3069–3077

    CAS  Google Scholar 

  • Gardner JD, Kilno DR, Swartz TJ, Butler VP (1973) Effects of digoxin-specific antibodies on accumulation and binding of digoxin by human erythrocytes. J Clin Invest 52:1820–1833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gavara N, Chadwick RS (2012) Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nat Nanotechnol 7(11):733–736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano G, Costa LG (2012) Developmental neurotoxicity: some old and new issues. ISRN Toxicol 2012:814795

    PubMed  PubMed Central  Google Scholar 

  • Gohner C, Svensson-Arvelund J, Pfarrer C et al (2014) The placenta in toxicology. Part IV: battery of toxicological test systems based on human placenta. Toxicol Pathol 42(2):345–351

    Google Scholar 

  • Gomez C, Bandez MJ, Navarro A (2007) Pesticides and impairment of mitochondrial function in relation with the parkinsonian syndrome. Front Biosci 12:1079–1093

    CAS  Google Scholar 

  • Grunwald GB (2018) Cell adhesion molecules as targets of developmental toxicants. In: McQueen CA (ed) Comprehensive toxicology, vol 5, 3rd edn. Elsevier Science, United Kingdom, pp 202–215

    Google Scholar 

  • Hochmuth RM, Shao JY, Dai J, Sheetz MP (1996) Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70:358–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann S, Kinsner-Ovaskainen A, Prieto P, Mangelsdorf I, Bieler C, Cole T (2010) Acute oral toxicity: variability, reliability, relevance and interspecies comparison of rodent LD50 data from literature surveyed for the ACuteTox project. Regul Toxicol Pharmacol 58(3):395–407

    CAS  Google Scholar 

  • Jiang X, Lu C, Tang M et al (2018) Nanotoxicity of silver nanoparticles on HEK293T cells: a combined study using biomechanical and biological techniques. ACS Omega 3(6):6770–6778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi J, Mahajan G, Kothapalli CR (2018a) Three-dimensional collagenous niche and azacytidine selectively promote time-dependent cardiomyogenesis from human bone marrow-derived MSC spheroids. Biotechnol Bioeng 115(8):2013–2026

    CAS  Google Scholar 

  • Joshi P, Datar A, Yu KN, Kang SY, Lee MY (2018b) High-content imaging assays on a miniaturized 3D cell culture platform. Toxicol In Vitro 50:147–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KS, Cho CH, Park EK, Jung MH, Yoon KS, Park HK (2012) AFM-detected apoptotic changes in morphology and biophysical property caused by paclitaxel in Ishikawa and HeLa cells. PLoS One 7(1):e30066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolahi KS, Mofrad MR (2010) Mechanotransduction: a major regulator of homeostasis and development. Wiley Interdiscip Rev Syst Biol Med 2(6):625–639

    CAS  Google Scholar 

  • Kozel BA, Su CT, Danback JR et al (2014) Biomechanical properties of the skin in cutis laxa. J Invest Dermatol 134(11):2836–2838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ladran I, Tran N, Topol A, Brennand KJ (2013) Neural stem and progenitor cells in health and disease. Wiley Interdiscip Rev Syst Biol Med 5(6):701–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landrigan PJ, Goldman LR (2011) Children’s vulnerability to toxic chemicals: a challenge and opportunity to strengthen health and environmental policy. Health Aff (Millwood) 30(5):842–850

    Google Scholar 

  • Lee YS, Lewis JA, Ippolito DL et al (2016) Repeated exposure to neurotoxic levels of chlorpyrifos alters hippocampal expression of neurotrophins and neuropeptides. Toxicology 340:53–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhou Z (2015) How are necrotic cells recognized by their predators? Worm 5(1):e1120400

    PubMed  PubMed Central  Google Scholar 

  • Li J, Spletter ML, Johnson DA, Wright LS, Svendsen CN, Johnson JA (2005) Rotenone-induced caspase 9/3-independent and -dependent cell death in undifferentiated and differentiated human neural stem cells. J Neurochem 92(3):462–476

    CAS  Google Scholar 

  • Li QS, Lee GY, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374(4):609–613

    CAS  Google Scholar 

  • Liang X, Shi X, Ostrovidov S, Wu H, Nakajima K (2016) Probing stem cell differentiation using atomic force microscopy. Appl Surf Sci 366:254–259

    CAS  Google Scholar 

  • Lins MP, Silva ECO, Silva GR et al (2018) Association between biomechanical alterations and migratory ability of semaphorin-3A-treated thymocytes. Biochim Biophys Acta 1862(4):816–824

    CAS  Google Scholar 

  • Liu YX, Karsai A, Anderson DS et al (2015) Single-cell mechanics provides an effective means to probe in vivo interactions between alveolar macrophages and silver nanoparticles. J Phys Chem B 119(49):15118–15129

    CAS  Google Scholar 

  • Malik N, Efthymiou AG, Mather K et al (2014) Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons. Neurotoxicology 45:192–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • May-Simera H, Liu C (2013) Neuronal polarity and neurological disorders. J Neurol Transl Neurosci 2(1):1026

    Google Scholar 

  • Messner B, Frotschnig S, Steinacher-Nigisch A et al (2012) Apoptosis and necrosis: two different outcomes of cigarette smoke condensate-induced endothelial cell death. Cell Death Dis 3:e424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Movsesyan VA, Stoica BA, Yakovlev AG et al (2004) Anandamide-induced cell death in primary neuronal cultures: role of calpain and caspase pathways. Cell Death Differ 11(10):1121–1132

    CAS  Google Scholar 

  • Müller DJ, Dufrêne YF (2011) Force nanoscopy of living cells. Curr Biol 21(6):R212–R216

    Google Scholar 

  • Murtaza M, Shan J, Matigian N et al (2016) Rotenone susceptibility phenotype in olfactory derived patient cells as a model of idiopathic Parkinson’s disease. PLoS One 11(4):e0154544

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien T, Babcock G, Cornelius J et al (2000) A comparison of apoptosis and necrosis induced by hepatotoxins in HepG2 cells. Toxicol Appl Pharmacol 164(3):280–290

    Google Scholar 

  • Pastrana HF, Cartagena-Rivera AX, Raman A, Ávila A (2019) Evaluation of the elastic Young’s modulus and cytotoxicity variations in fibroblasts exposed to carbon-based nanomaterials. J Nanobiotechnology 17(1):32

    PubMed  PubMed Central  Google Scholar 

  • Pi J, Li T, Liu J et al (2014) Detection of lipopolysaccharide induced inflammatory responses in RAW264.7 macrophages using atomic force microscope. Micron 65:1–9

    CAS  Google Scholar 

  • Pillarisetti A, Desai JP, Ladjal H, Schiffmacher A, Ferreira A, Keefer CL (2011) Mechanical phenotyping of mouse embryonic stem cells: increase in stiffness with differentiation. Cell Reprogr 13(4):371–380

    CAS  Google Scholar 

  • Pontes B, Viana NB, Salgado LT, Farina M, Moura Neto V, Nussenzveig HM (2011) Cell cytoskeleton and tether extraction. Biophys J 101(1):43–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puech PH, Taubenberger A, Ulrich F, Krieg M, Muller DJ, Heisenberg CP (2005) Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy. J Cell Sci 118(18):4199–4206

    CAS  Google Scholar 

  • Qiu H, Zhu Y, Sun Z et al (2010) Short communication: vascular smooth muscle cell stiffness as a mechanism for increased aortic stiffness with aging. Circ Res 107(5):615–619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rammensee S, Kang MS, Georgiou K, Kumar S, Schaffer DV (2017) Dynamics of mechanosensitive neural stem cell differentiation. Stem Cells 35(2):497–506

    CAS  Google Scholar 

  • Ross EJ, Graham DL, Money KM, Stanwood GD (2015) Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology 40(1):61–87

    CAS  Google Scholar 

  • Sachet M, Liang YY, Oehler R (2017) The immune response to secondary necrotic cells. Apoptosis 22(10):1189–1204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salama M, El-Morsy D, El-Gamal M, Shabka O, Mohamed WM (2014) Mitochondrial complex I inhibition as a possible mechanism of chlorpyrifos induced neurotoxicity. Ann Neurosci 21(3):85–89

    PubMed  PubMed Central  Google Scholar 

  • Seoposengwe K, van Tonder JJ, Steenkamp V (2013) In vitro neuroprotective potential of four medicinal plants against rotenone-induced toxicity in SH-SY5Y neuroblastoma cells. BMC Complement Altern Med 13:353

    PubMed  PubMed Central  Google Scholar 

  • Slotkin TA, Card J, Seidler FJ (2012) Chlorpyrifos developmental neurotoxicity: interaction with glucocorticoids in PC12 cells. Neurotoxicol Teratol 34(5):505–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, Graham JS, Hegedus B et al (2005) Multiple membrane tethers probed by atomic force microscopy. Biophys J 89(6):4320–4329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson A, Azarbayjani F, Bäckman U, Matsumoto T, Christofferson R (2005) Digoxin inhibits neuroblastoma tumor growth in mice. Anticancer Res 25:207–212

    CAS  Google Scholar 

  • Szekacs I, Farkas E, Gemes BL, Takacs E, Szekacs A, Horvath R (2018) Integrin targeting of glyphosate and its cell adhesion modulation effects on osteoblastic MC3T3-E1 cells revealed by label-free optical biosensing. Sci Rep 8(1):17401

    PubMed  PubMed Central  Google Scholar 

  • Tamm C, Ceccatelli S (2017) Mechanistic insight into neurotoxicity induced by developmental insults. Biochem Biophys Res Commun 482(3):408–418

    CAS  Google Scholar 

  • Tasneem S, Farrell K, Lee MY, Kothapalli CR (2016) Sensitivity of neural stem cell survival, differentiation and neurite outgrowth within 3D hydrogels to environmental heavy metals. Toxicol Lett 242:9–22

    CAS  Google Scholar 

  • Wang B (2013) Variable selection in ROC regression. Comput Math Methods Med 2013:436493

    PubMed  PubMed Central  Google Scholar 

  • Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10(1):34–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Yu T, Gilbertson TA, Zhou A, Xu H, Nguyen KT (2012) Biophysical assessment of single cell cytotoxicity: diesel exhaust particle-treated human aortic endothelial cells. PLoS One 7(5):e36885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xing F, Wang J, Hu M, Yu Y, Chen G, Liu J (2011) Comparison of immature and mature bone marrow-derived dendritic cells by atomic force microscopy. Nanoscale Res Lett 6(1):455

    PubMed  PubMed Central  Google Scholar 

  • Xu W, Lakshman N, Morshead CM (2017) Building a central nervous system: the neural stem cell lineage revealed. Neurogenesis (Austin) 4(1):e1300037

    Google Scholar 

  • Yamada S, Kubo Y, Yamazaki D, Sekino Y, Kanda Y (2017) Chlorpyrifos inhibits neural induction via Mfn1-mediated mitochondrial dysfunction in human induced pluripotent stem cells. Sci Rep 7:40925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung TK, Germond C, Chen X, Wang Z (1999) The mode of action of taxol: apoptosis at low concentration and necrosis at high concentration. Biochem Biophys Res Commun 263(2):398–404

    CAS  Google Scholar 

  • Yim EK, Darling EM, Kulangara K, Guilak F, Leong KW (2010) Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31(6):1299–1306

    CAS  Google Scholar 

  • Yokokawa M, Takeyasu K, Yoshimura SH (2008) Mechanical properties of plasma membrane and nuclear envelope measured by scanning probe microscope. J Microsc 232(1):82–90

    CAS  Google Scholar 

  • Zaucke F, Zöltzer H, Krug HF (1998) Dose-dependent induction of apoptosis or necrosis in human cells by organotin compounds. Fresenius J Anal Chem 361(4):386–392

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge help from Soo-Yeon Kang with cell passaging and high-content imaging equipment. This work was partially supported by funds from National Institutes of Health (NIEHS R01ES025779) to C.K. and M.Y.L., National Science Foundation (CBET, Award # 1337859) to C.K., and Graduate Student Research Award to G.M from Cleveland State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekhar Kothapalli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The manuscript does not contain clinical studies or patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

204_2019_2549_MOESM2_ESM.tiff

Supplementary Figure 1 Representative immunofluorescence images of SOX2 expression in ReNcells VM exposed to various concentrations (0, 0.25 × IC50, 0.5 × IC50, IC50) of rotenone, digoxin, AEA, and chlorpyrifos for 24 h. Cultures were counterstained with DAPI for cell identification. Primary antibody for SOX2 was used in combination with appropriate secondary antibody. Scale bar: 200 µm. (TIFF 8554 kb)

204_2019_2549_MOESM3_ESM.tiff

Supplementary Figure 2 Average (± standard error) elastic modulus (A), adhesion force (B) and tether force (C) of human NPCs in control cultures for 4, 12, 24 and 36 h (n ≥ 45 cells in each case). No significant changes were observed in the biomechanical properties in control cultures over time. (TIFF 407 kb)

204_2019_2549_MOESM4_ESM.tiff

Supplementary Figure 3 The IC50 values from the four assays were compared to identify the most sensitive mechanism by which rotenone, digoxin, AEA, or chlorpyrifos induces toxicity in human NPCs. All assays were done at the 24 h time point. (TIFF 346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, G., Lee, MY. & Kothapalli, C. Biophysical and biomechanical properties of neural progenitor cells as indicators of developmental neurotoxicity. Arch Toxicol 93, 2979–2992 (2019). https://doi.org/10.1007/s00204-019-02549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02549-9

Keywords

Navigation